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Abstract 

The United States Air Force has advanced fighter aircraft that lose the ability to 

operate in a large portion of their operating flight envelope when an air data system 

failure is experienced.  These aircraft are reverted to a fixed set of standby-gains that 

limit their maneuverability, degrade handling qualities, and increase susceptibility to 

departure.  The purpose of this research was to determine if three alternative methods of 

standby-gain-scheduling could provide robust control with minimal performance 

degradation despite the lack of air data.  

To accomplish this, three methods of standby-gain-scheduling were developed, 

integrated, and tested in the Infinity Cube simulator at the Air Force Research 

Laboratory/RBCD building.  The first method improved upon an algorithm which used 

inertial data to estimate an aircraft‟s true velocity used to drive the gains in an F-16 

controller.  This algorithm was validated by post-processing high-fidelity simulator data 

and actual flight data.  The second method simply used inertial velocities to drive the 

gains in an F-16 controller.  The final method used a disturbance observer controller 

which controlled aircraft dynamics without the use of gain-scheduling.   

The results showed the potential for effective aircraft control with minimal 

performance degradation following an air data system failure.  Potential benefits to this 

research include eliminating the need to make switch actuations to correctly schedule the 

standby-gains; improving aircraft performance when flying with standby-gains; allowing 

the pilot to continue with a combat mission instead of returning to base with an air data 

system failure; and helping contribute to the removal of Pitot tubes in an attempt to 

eliminate a failure mode and to reduce the radar cross section of an aerial vehicle.   
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ALTERNATIVE METHODS TO STANDBY GAIN SCHEDULING FOLLOWING 

AIR DATA SYSTEM FAILURE 

 

 

 

1.0 Introduction 

1.1 Motivation 

Currently, the Air Force has advanced fighter aircraft that require a pilot to make 

switch actuations to correctly schedule flight control system standby-gains in the event of 

air data system failures.  There are two problems with this current method.  First, the pilot 

must take time away from other pertinent tasks to manually position the standby-gains 

via the landing gear handle, air-to-air refueling door switch or some other means.  

Second, the standby-gain settings are suboptimal for an advanced fighter flight envelope 

and are primarily designed to allow for the safe recovery and landing of an aircraft.  This 

suboptimal setting can lead to decreased aircraft handling qualities and increased pilot 

work load throughout a majority of the normal flight envelope. 

The modern high-performance aircraft flight envelope covers a wide range of 

dynamic pressures, resulting in a wide range of aircraft dynamics.  Because of these large 

changes in aircraft dynamics, a dynamic mode that is stable and adequately damped in 

one flight condition may become unstable, or at least inadequately damped, in another 

flight condition [Stevens and Lewis, 2003].  Therefore, a controller must have the ability 

to change with its flight condition in order to provide the proper aircraft response.  A way 

to accomplish this is to design multiple controllers at various equilibrium points
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throughout the flight envelope and combine these individual controllers into a single 

controller that is scheduled according a prescribed flight condition (i.e. airspeed and 

altitude) [Blue et al, 2002].  This process is known as gain-scheduling.  Designing gain-

scheduled controllers is a very complex process, especially when implemented in a 

modern high-performance aircraft. 

Modern high-performance flight control systems are heavily dependent on valid 

air data measurements (true airspeed, alpha, beta, pressure differentials, temperature etc.) 

to properly schedule the flight control response.  Air data measurement systems have 

three inherent limitations.  First, most air data systems currently in use are un-stealthy by 

nature.  They contain Pitot tubes which extend away from the structure to measure 

undisturbed airflow.  While the radar signature of a Pitot tube can be reduced, it cannot 

be completely eliminated.  Second, the systems can be quite complex.  Even the most 

rudimentary system has numerous probes, ports, lines, computers, and interfaces.  They 

all add weight, volume, and maintenance workload to the aircraft.  Finally, the 

dependency on air data measurements could lead to a loss of aircraft if those 

measurements should cease or become inaccurate.  An ability to derive air data 

parameters without direct air data measurements would be useful either as a backup to the 

air data system, or as an entirely self contained system that eliminates the need for 

external and internal air data components. 

   

1.2 Problem Statement 

 The purpose of this work is to compare alternative methods of standby-gain-

scheduling.  The first alternative method builds upon an algorithm which uses inertial 



 

3 

navigation system (INS) data to estimate the aircraft‟s true velocity [McLaren, 2008].  

This estimated true velocity will then be used to drive the gain-schedule in an F-16 

controller (VEST 2 controller).  The second method simply uses inertial velocities to 

drive the gains in an F-16 controller (INS or inertial controller).  The final method uses a 

disturbance observer which attempts to control aircraft dynamics without the use of gain-

scheduling (DO controller).  The goal of this research is to compare these three 

alternative methods of standby-gain-scheduling and draw some conclusions about their 

utility.  

1.3 Research Objectives 

If an aircraft‟s air data system fails, true airspeed cannot be measured with the 

systems on board.  Inertial and global positioning system sensors can provide accurate 

ground velocity but without some measurement of true airspeed, automatic gain-

scheduling using true airspeed becomes impossible.  The objective of this research was to 

determine if alternative methods of standby-gain-scheduling could provide robust control 

despite the absence of an air data system.  Accomplishment of this objective meant the 

design, development, and implementation of three standby-gain-scheduled controllers; a 

velocity estimator gain-scheduled controller (VEST 2 controller); an inertial velocity 

gain-scheduled controller (inertial or INS controller); and a large flight envelope 

disturbance observer controller (DO controller) that did not require gain-scheduling.  

Testing and comparing the results of each controller will allow for an overall 

characterization of each method of standby-gain-scheduling.  Validation of the velocity 
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estimator algorithm itself will provide an actual measure of the estimator‟s performance.  

Using the information gathered from the comparison, implementation, testing, and 

validation of the controllers will provide a reasonable assessment of the potential for 

using each of the alternative methods of standby-gain-scheduling. 

1.3.1 Compare Alternative Methods of Standby-Gain-Scheduling. 

The methodology behind this analysis is to establish a baseline measure of 

performance by flying a nominal block 40 F-16C using Air Force Research 

Laboratory/RBCD‟s high-fidelity, pilot-in-the-loop Infinity Cube simulator.  Then, 

assuming there is an air data system failure, a comparison of the three different standby-

gain-scheduling controllers (VEST 2 controller, DO controller, and inertial or INS 

controller) will be performed.  The VEST 2 controller will use an estimated velocity to 

drive the block 40 F-16C gain-scheduling.  The DO controller will use a disturbance 

observer (DO), as a standby controller that does not require gain-scheduling.  Finally, the 

inertial controller will use aircraft inertial velocities to drive the block 40 F-16C gain-

scheduling.   

 1.3.2 Validate Estimated Airspeed Algorithm with Simulation and Flight 

Data. 

 The airspeed estimate from the VEST 2 controller will be compared to airspeeds 

from a block 40 F-16C simulator and actual aircraft flight data from a block 30 F-16D.  

The simulator validation will be accomplished with the controller implemented in the 

flight controls of the block 40 F-16C simulator.  The flight data validation will be 
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accomplished by post-processing actual flight data from a block 30 F-16D using the same 

airspeed estimator algorithm used with the VEST 2 controller.   

 1.3.3 Assess the Potential for Using Alternative Methods of Standby-Gain-

Scheduling. 

 The three different standby-gain-scheduling controllers will be compared to a 

baseline F-16 controller in a block 40 F-16C simulator.  Both pilot opinion and statistical 

data will be recorded in an attempt to compare the performance of each controller.  The 

end result is to validate the utility of each of the standby-gain-scheduling methods. 

1.4 Approach 

 This thesis was a follow on to previous research which looked at estimating 

aircraft true airspeed following an air data system failure.  Specifically, this work set out 

to investigate whether an estimated airspeed could be used to schedule flight control 

gains as an alternative to standby-gain-scheduling.  Along the way, the original airspeed 

estimator was improved and two other alternatives to standby-gain-scheduling were 

investigated. 

Knowing what information was available after an air data system failure provided 

a starting point from which to continue analysis.  The available information included a 

last known state prior to failure, aircraft INS outputs, and global positioning system 

velocities.  This research also assumed that measurements of alpha and beta still existed.  

With this information available, it was possible to test all three standby-gain-scheduling 

controllers.  The VEST 2 controller used a geometric relationship between inertial 
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velocities, wind, and true airspeed combined in an algorithm to provide estimates of 

current wind and true airspeed components [McLaren, 2008].  The inertial controller 

simply used the inertial velocity information still available from an INS to schedule 

gains.  Finally, a disturbance observer (DO) controller was designed to control a large 

flight envelope that was independent of gain-scheduling.  After incorporating all standby-

gain-scheduling controllers into an F-16C flight simulator, the three controllers were 

compared with the nominal block 40 F-16C controller to determine the utility of each 

method of standby-gain-scheduling.  Finally, VEST 2 was selected for further analysis 

using actual aircraft data from a block 30 F-16D.  The flight data was post processed 

using the airspeed estimator algorithm in order to validate the algorithm.  The validation 

process was intended to demonstrate that the error of the estimator was small and 

minimally variable which would make it safe to assume that the original flight controller 

could be used in conjunction with the velocity estimator to provide aircraft control that is 

equivalent to the nominal block 40 F-16C controller.   

1.5 Preview of Results and Implications 

 Three alternatives to the traditional standby-gain-scheduling were developed and 

compared in an F-16C simulator.  The results of this research clearly show the potential 

for effective aircraft control with minimal performance degradation following an air data 

system failure.  The VEST 2 controller and the inertial controller showed almost no 

performance degradation or increased pilot workload when compared to the nominal 

block 40 F-16C controller.  Even though the DO controller resulted in decreased aircraft 



 

7 

performance and increased pilot workload, it still managed to obtain at least adequate 

performance with a tolerable workload throughout the designed flight envelope (0.4 – 0.8 

Mach and 5,000 – 25,000 ft).  This result demonstrated the potential for using a DO 

controller for large flight envelope control without the need for gain-scheduling.   

 The majority of this research was conducted under the assumption that 

measurements of alpha and beta were still available following an air data system failure.  

With an air data system failure it is highly unlikely that alpha and beta will be available.  

Therefore a way to obtain an accurate estimate of alpha and beta would be required for 

the DO to function properly in the lateral and directional axis.  On the contrary, the 

inertial controller worked independent of alpha and beta and required no additional 

development to provide adequate control.  For the VEST 2 algorithm to function it also 

needed alpha and beta.  Inertial velocities were used to estimate alpha, and beta was set to 

zero in order to simulate an actual air data system failure.  Post-processing actual aircraft 

data using the VEST 2 algorithm resulted in a low average estimated wind speed error 

(6.6 ± 3.8 knots ) that was non-divergent and minimally variable in heading.  Therefore, 

the estimated wind speed from the VEST 2 algorithm could make a viable substitute for 

determining true airspeed used in traditional gain-scheduling.       

 Alternative methods to standby-gain-scheduling could be possible as a result of 

this research.  In the event of an air data system failure, any of the alternative methods to 

standby-gain-scheduling researched would eliminate the pilot‟s requirement to make 

switch actuations to correctly schedule the standby-gains in a large flight envelope.  

Secondly, the aircraft performance may prove to be more effective than the traditional 
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standby-gain settings allowing the pilot to continue with a combat mission as opposed to 

selecting the standby-gain, flying a particular airspeed and returning to base.  Finally, this 

research may someday contribute to the removal of Pitot tubes in an attempt to eliminate 

a failure mode and to reduce the radar cross section of an aerial vehicle.  

1.6 Thesis Overview 

This thesis is designed to give an in-depth look at the theory and concepts used 

during the development of the standby-gain-scheduling controllers.  Chapter 2 provides 

the background information necessary to understand the development behind each 

method of control.  Then, the specific theory, concepts applied to each controller and 

desktop simulation results will be covered in Chapter 3.  Chapter 4 contains the block 40 

F-16 high-fidelity simulator results and the validation of the VEST 2 estimator.  Finally, 

Chapter 5 draws research conclusions, discusses future applications, and recommends 

follow-on research.  
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2.0 Background 

2.1 Chapter Overview 

The purpose of this chapter is to provide a review of basic theory applicable to the 

various methods of standby-gain-scheduling control.  The chapter explains pertinent 

aircraft systems, key terms, disturbance observer control theory, the mathematical theory 

behind Kalman filtering, and pilot opinion performance scales.  The background 

presented here forms the basis for the development of the standby-gain-scheduling 

controllers.      

2.2 Air Data Aircraft Systems 

 The performance of an aircraft depends on the combined effort of all its 

subsystems.  The outputs of these subsystems are combined into several complex flight 

control computers which transform pilot inputs into acceptable control surface deflections 

leading to desired aircraft performance [McLaren, 2008].  Air data systems make up a 

small portion of the total aircraft, but are essential in obtaining desired aircraft responses. 

 2.2.1 Pitot Static Systems. 

 Pitot static systems are essential to modern high-performance aircraft.  They 

produce a differential pressure reading by measuring the difference between total and 

static pressure.  This differential pressure is read off of a gage which is calibrated to 

convert differential pressure measurements into indicated airspeed.  Indicated airspeed 
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measurements provided by the Pitot static system are then converted into true airspeed 

which is typically used for gain-scheduling.  Gain-scheduling associated with modern, 

large-envelope, fighter-type aircraft depend heavily on the Pitot static system. 

 This essential system consists of at least one Pitot tube, one or more static ports 

and a device for measuring differential pressure [Brandt, 2004].  Pitot tubes usually 

extend away from the surface of the aircraft, measuring free-stream (undisturbed) total 

and static pressures.  

 

 

Figure 1.  Pitot Tube 
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In the incompressible case, the total pressure port measures a combination of static 

pressure and dynamic pressure.  Whereas the static pressure ports, oriented parallel to the 

flow field, prevent a stagnation point from developing and allow the measurement to be 

as close to free-stream static pressure as possible [Brandt, 2004].   The basic concept of 

using a pressure differential to measure airspeed stems from Daniel Bernoulli's discovery 

that total pressure is constant along a streamline.  Ignoring the effects of elevation, body 

forces, and assuming steady flow, Bernoulli's equation 

 

establishes the relationship between pressure (P), velocity (V) and density (ρ) along a 

streamline [Nelson, 1998].  If the integration is performed along a streamline with the 

steady flow of an inviscid, incompressible fluid for which body forces are negligible, the 

result is shown below [Brandt, 2004]: 

 

Each side of Bernoulli's equation contains a combination of static pressure  and 

dynamic pressure  and can be re-written as: 

 

 Together, both static and dynamic pressures make up the total pressure  along a 

streamline.  With total pressure and static pressure measured from the pitot static system, 

one can see how rearranging equation 3 yields an equation for the free-stream velocity  

: 
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This freestream velocity describes exactly how fast the aircraft is moving through the air 

mass and is known as true airspeed (TAS). 

 2.2.2 Indicated, Calibrated, Equivalent, True Airspeeds and Mach Number. 

 TAS is normally not attainable directly from the Pitot static system.  A 

conversation process is necessary in order to obtain TAS.  Typically, the process begins 

with indicated airspeed  which is measured by the pitot static system.  Then, the 

indicated airspeed must be corrected for position and installation error .  This new 

airspeed is known as calibrated airspeed .   

 

The calibrated airspeed must then be corrected for the actual existing pressure.  Making 

the pressure correction produces an equivalent airspeed    

 

where  is a compressibility correction factor. Finally, equivalent airspeed is corrected 

for the actual existing density.  When the density correction is completed, the result is the 

aircraft's TAS (  

 

where  is sea level density, and  is the density at the associated flight condition. 
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 Recall that the free-stream velocity defined section 2.2.1 did not take 

compressibility effects into account.  A compressible form of Bernoulli's equation can be 

determined by accomplishing the integration of Euler's momentum equation with density 

varying as well [Brandt, 2004].  The end result is a compressible form of the Bernoulli 

equation similar to the incompressible solution shown below: 

 

The TAS above now accounts for compressibility effects but due to several factors, this 

equation is difficult to implement directly into a mechanical system.  For instance, 

obtaining an accurate measurement of free-stream density is difficult to do.     

Therefore, in order to overcome this problem, airspeed indicators are 

manufactured with gears calibrated to use sea-level standard atmospheric values of 

pressure and density [Brandt, 2004].  This calibration process produces the following 

calibrated airspeed: 

 

As stated earlier, an adjustment must be made to the calibrated airspeed in order to 

correct for position and installation error.  The position and installation errors are 

determined through flight test and are quantified as a velocity change ( ).  
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As evident by equation 5, if there were no installation or position errors, indicated 

airspeed would be equal to calibrated airspeed.   

 Calibrated airspeed must now be corrected for the actual existing pressure.  

Making the pressure correction produces an equivalent airspeed with the following 

definition: 

 

 

 Finally, equivalent airspeed is adjusted for actual density conditions,  

 

and the end result is TAS.  The purpose of TAS is to describe how fast an aircraft is 

moving through an air mass.  It is rarely used by pilots, but is essential for scheduling 

gains in a flight control system, and is necessary in calculating groundspeed [McLaren, 

2008].  

 An extension to TAS is the free-stream Mach number (M).  The free-stream Mach 

number is defined as the ratio of TAS to the speed of sound ( ).  

 

  The speed of sound depends almost entirely on temperature.  Thus, the temperature 

change associated with an aircraft‟s altitude change affects the Mach number.  In other 

words, an aircraft that is flying 500 knots TAS at 5,000 ft would have a different Mach 



 

15 

number than if that same aircraft was traveling 500 knots TAS at 10,000 ft.   When 

defining the Mach number in terms of pressure measurements from the Pitot static 

system, there are two versions; one for Mach < 1 [Kayton and Fried, 1997]  

 

and one for Mach > 1 [Erb, 2005] 

 

The difference between the two conditions is due to a bow wave that forms at the mouth 

of a supersonic Pitot static system [Nelson, 1998].  Using a normal shock analysis to 

approximate the bow wave leads to equation 14. 

 2.2.3 Air-Data Computers. 

 Typical air-data computers are composed of pressure transducers, excitation 

circuitry, signal-conditioning circuitry, a processor, and output drivers capable of 

interfacing with aircraft subsystems.  Their primary purpose is to take total and static 

pressures along with static air temperature and compute Mach number, temperature, 

speed of sound, calibrated airspeed, true airspeed, pressure altitude, baro-corrected 

altitude, density, and density altitude [Kayton and Fried, 1997].    

 2.2.4 Alpha and Beta Sensors. 

 The measurement for aircraft angle of attack (AOA) is important for many 

reasons.  From aircraft safety in the form of stall warnings; to approaches and landings; to 
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basic fighter maneuvering (BFM); the AOA sensor provides critical information to a 

pilot.  There are a few different types of sensors used to measure AOA.  The first type of 

sensor is a body mounted sensor in the form of a probe or vane shown in figure 2.   

 

Figure 2.  Angle of Attack Sensors 

Body mounted sensors attempt to minimize position error by locating the probe or vane 

along the fuselage, close to the aircraft center of mass [Nelson, 1998].  The pivot vane 

sensor is mass-balanced and seeks to align itself with the undisturbed free-stream airflow.  

The probe sensor has two slots spaced at equal angles to measure pressure.  A transducer 

computes the pressure differential between the two slots and the probe rotates to zero out 

the pressure differential.  The rotation is measured and converted into an AOA 

measurement.   

 Another type of AOA sensor illustrated in Figure 3 is a nose-mounted air-data 

boom, with pressure probes and flow-direction vanes.   
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Figure 3.  Nose-mounted Air-data Boom 

This type of sensor is used almost extensively in flight test programs [Nelson, 1998] and 

contains both AOA and sideslip angle vanes.       

 The AOA and sideslip sensors measure the aerodynamic angles alpha (α) and beta 

(β).  They are referred to as the aerodynamic angles since they are the only two angles 

that specifically relate the aerodynamic forces and moments in the body-fixed coordinate 

system (BFCS) to the wind axis system [Stevens and Lewis, 2003].  The BFCS is defined 

from the center of mass with the x-axis parallel to the fuselage reference line, the y-axis 

out the right wing and the z-axis down.  To get from the BFCS to the wind axis, the 

forces and moments must first be rotated about the body y-axis by α to the stability axis.  

Then, a rotation from the stability axis by β about the body z-axis yields the forces and 

moments in the wind axis.  Both the wind and stability axis have advantages but in this 

research, the desire to roll about the stability axis will become important later when 

discussing changes in AOA. 

 Finally, α and β can be defined in terms of the body axis using velocities  and 
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Figure 4.  Aircraft Body Axis Designation 

Where,  is the velocity along the x-body  axis,  is the velocity along the y-body 

 axis, and  is the velocity along z-body  axis.  Applying these relations defines 

both α and β in the following form: 

 

 

  

 2.2.5 Velocity Triangle. 

 When an aircraft is flying, its velocity vector can be entirely described by three 

separate velocities: ground velocity ( ), true velocity ( ), and wind velocity ( ).  

Under zero sideslip conditions, an aircraft points and flies along the true velocity vector.  

The wind vector alters the aircraft‟s track over the ground by its magnitude and direction.  

Ground velocity is the sum of these two velocity vectors shown in the relationship below: 
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 Typically,  is determined from inertial or global positioning system measurements, 

while , as described in the Pitot static section, is obtained from the Pitot static system 

[Kayton and Fried, 1997].  This leaves  as the only remaining unknown in the velocity 

triangle depicted below.  

 

 

 

This relationship is used almost exclusively for the calculation of winds experienced by 

an aircraft.   

 Additionally, an aircraft‟s true heading with no sideslip is determined by the angle 

from true north to .  The ground track heading is the angle from true north to .  As 

shown in Figure 5, the difference between the two headings is a result of wind conditions 

[McLaren, 2008]. 

VT 

VW 

VG 

True North 

True 

Heading 

Figure 5.  Velocity Triangle 
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 2.2.6 Inertial Navigation System Aided Global Positioning System. 

 An inertial navigation system (INS) is used on aircraft to keep track of position, 

velocity, and attitude over time.  There are two fundamental error sources which affect 

the performance of an INS [Kayton and Fried, 1997].  These errors appear in the 

measurements of forces made by accelerometers and in the measurements of angular 

rates made by gyroscopes.  Through the use of a Kalman filter (discussed in 2.4.4), these 

errors can be minimized [Kayton and Fried, 1997].  Even so, the errors associated with 

accelerometers and gyroscopes cause an INS to “drift” away from the actual position.  

This can be corrected with the use of a global positioning system (GPS) update.  A GPS 

update provides an updated position to the INS, effectively bounding the error in 

position, velocity and attitude [Kayton and Fried, 1997].    

 2.2.7 Flight Control Gain-Scheduling. 

 The difference in the aircraft flight performance envelopes of the 1930‟s and 

today is enormous.  The modern aircraft flight envelopes cover a wide range of dynamic 

pressures.  Assuming a standard lapse rate of temperature exists, the dynamic pressure 

envelope can be calculated.  Figure 6 depicts the change in dynamic pressure over a large 

portion of the subsonic flight envelope (sea level to 36,000 feet and 0.1 to 0.9 Mach). 
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Figure 6.  Dynamic Pressure Envelope 

The differences in dynamic pressure throughout the flight envelope lead to large 

variations in aircraft dynamics.  Because of these large changes in aircraft dynamics, a 

dynamic mode that is stable and adequately damped in one flight condition may become 

unstable, or at least inadequately damped, in another flight condition [Stevens and Lewis, 

2003].  In order to remedy this problem, multiple feedback controllers are designed at 

various equilibrium points throughout the flight envelope and scheduled as a function of 

dynamic pressure.  Gain-scheduling combines these feedback controllers into one 

controller that correlates with a prescribed flight condition (i.e. true airspeed and altitude) 

[Blue et al, 2002].   
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Designing a gain-scheduled controller is a very complex process, especially when 

implemented in a modern high-performance aircraft.  However, through the use of gain-

scheduling, modern aircraft can provide desired performance and maintain desired 

stability criteria throughout the entire modern high-performance flight envelope 

[McLaren, 2008]. 

  
 2.2.8 Aircraft Failure Modes. 

Aircraft redundancy deals with having multiple same-type independent systems or 

channels that allow an aircraft to continue to fly in the event of a single component 

failure.  Redundant systems, such as flight controls systems or static ports, are essential 

for safe flight.  However, on limited occasions, entire aircraft systems do fail.  These 

failures drive the need for standby systems which, at the very least, allow for the safe 

recovery and landing of an aircraft.  Following an air data system failure, a standby 

controller is used for just this purpose.   

Typically, a flight Control System (FLCS) transitions to a fixed set of standby-

gains which are optimized for a specific altitude and airspeed with the landing gear 

handle up, and a different altitude and airspeed with the landing gear handle down.  If the 

aircraft has leading edge flaps, they are typically set to a fixed position that is associated 

with a specific configuration or switch position.  There may also be another set of 

standby-gains associated with an air refueling switch, or some other switch to define an 

additional set of standby-gains.  Handling qualities during standby-gain operations are 

usually degraded with certain limits placed on the minimum and maximum airspeeds.  An 

aircraft may also be more susceptible to departure when standby-gains are used.  
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Knowing this, limits may be placed on angles of attack to minimize the chance of aircraft 

departures when standby-gains are used.   

As evident by the limitations above, aircraft performance following an air data 

system failure can be limited.  An example of this limited aircraft performance is shown 

in Figure 7 where aircraft responses are shown in both the normal and the standby-gain 

mode of a block 40 F-16C simulator. 

 

  

  

Figure 7.  Block 40 F-16C Aircraft Responses at 0.4 Mach and 25,000 feet 
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It is obvious from the aircraft commands and responses that there can be significant 

degradation in aircraft performance when an aircraft must operate in the standby-gain 

mode. 

With this degradation, modern high-performance aircraft can no longer take 

advantage of the entire flight envelope as aircraft performance now depends on a select 

set of gains typically driven by aircraft configuration.  In this case, pilots must exercise 

great care as they transition from one phase of flight to another.    

2.3 Disturbance Observer 

 Classical aircraft control includes feedback systems designed to provide improved 

aircraft handling qualities over the bare airframe.  Improvements to the bare airframe 

include a stability augmentation system (SAS), capable of providing suitable damping 

and natural frequencies, and a control augmentation system (CAS), providing the pilot 

with a particular type of response to control inputs [Stevens and Lewis, 2003].  These 

augmented control systems must satisfy stringent performance specifications throughout 

a large flight envelope, despite changes in aircraft dynamics that vary significantly across 

the entire flight envelope [Blue et al, 2002].  In order to provide the level of performance 

necessary throughout the entire flight envelope, a gain-scheduling system is used.  The 

development of an aircraft gain-scheduled controller is a challenging task that requires 

significant amount of time and effort.  The disturbance observer (DO) controller 

combines all the above systems into one simple controller, capable of producing the 

desired performance over a wide range of flight conditions.  
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The disturbance observer is a type of control system that contains both 

disturbance rejection capabilities and insensitivity to modeling errors [Ackermann, 2002].  

Combining these two capabilities with a feedback system which specifies the desired 

dynamics can produce a “controller that „forces‟ the closed-loop dynamics to behave like 

the specified „desired dynamics‟ despite disturbances, modeling uncertainties, and 

variations in aircraft dynamics due to changing flight conditions” [Blue et al, 2002].  An 

example of a pitch axis DO controller designed by Blue et al is shown below. 

 

 

Figure 8.  Pitch Axis Disturbance Observer Controller 

Typically, the architecture of a DO includes a nominal plant model in the 

controller, to estimate disturbances; however, as implemented above, this DO 

architecture is used specifically to define the desired dynamics [Blue et al, 2002].  In this 

case, choosing pitch-rate (q) as the command variable (CV) allows the desired dynamics 

( ) to be chosen from the pitch-rate flying qualities specifications in MIL-STD-1797B.  

With the desired dynamics chosen, the design goal is to produce the following input-

output relationship: 
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Where the commanded pitch-rate input ( ) and  combine to produce the desired 

pitch-rate flying qualities in q.   In this case,  is defined as the desired elevator 

command sent to the elevator actuator in order to obtain the desired pitch-rate.  The filter, 

Q, is the only remaining variable that is unknown and thus, it becomes the design 

variable.  The objective in designing the filter Q to ensure the pitch-rate command 

provides the desired response despite changing flight conditions, disturbances, sensor 

noise, and model uncertainty [Blue et al, 2002]. 

 2.3.1 The Model and Desired Dynamics. 

  Before discussing the design of Q, the desired longitudinal dynamics and the 

model development require some attention.  As stated above, the desired dynamics were 

chosen from MIL-STD-1797B in order to provide Level 1 pitch-rate command tracking 

throughout the design flight envelope   feet and  [Blue 

et al, 2002].  The pitch-rate flying qualities specifications taken from MIL-STD-1797B 

are shown in Figure 9.  
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Figure 9.  Pitch-Rate Response to Step Input of Pitch Controller 

The characteristics of the pitch response specify an effective rise time, , an effective 

time delay, , and a transient peak ratio, .  The values of these specifications, shown 

in Table 1, are given ranges in which they must fall to guarantee Level 1 flying qualities. 

Table 1.  Pitch-Rate Response Characteristics to a Step Input 
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With these ranges, a transfer function meeting the minimum requirements for Level 1 

pitch-rate flying qualities can be chosen and implemented into the pitch axis DO design.  

In the pitch-axis DO design, the aircraft model used contains the standard short 

period equations of motion coupled with a first order approximation of the actuator 

dynamics [Blue et al, 2002].  In the following short period equation, α is the angle-of-

attack, and  is the elevator deflection  

 

 

 

and  is the first order approximation of actuator dynamics.  These equations form the 

basis for the longitudinal aircraft model.  The dimensional coefficients, , , , , 

and  depend mainly on altitude (h) and Mach number (M) at trimmed level flight 

[Blue et al, 2002].  Therefore, with the proper data from the following flight conditions,  

 

 

these dimensional coefficients can be written as polynomial functions of h and M [Blue et 

al, 2002].   

 

Combining this version of the short period dynamics with the actuator dynamics yields 

the following model: 
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Even though this aircraft model accurately represents an aircraft‟s short period dynamics 

throughout the flight envelope  feet and , there are 

obvious modeling errors that exist when modeling longitudinal dynamics [Blue et al, 

2002].  

 In an attempt to account for these modeling errors, Blue et al combine the aircraft 

model with a multiplicative uncertainty,  to account for some of the existing 

uncertainties in the aircraft model. 

 

The multiplicative uncertainty can be broken down even further where , 

  and  defines the frequency content of the uncertainty.  Typically,  is 

small at low frequencies where the model represents the actual system fairly well (short 

period dynamics), and larger at high frequencies where model uncertainties increase 

[Ackermann, 2002].   In block diagram form, the multiplicative uncertainty is illustrated 

in figure 10 below. 

 

Figure 10.  Multiplicative Uncertainty Block Diagram 

 The final adjustments to the model include adding a performance weight, , and 

a command weight, to the system.  The performance weight and command weight 

come from guidance given in MIL-STD-1797B and are typical frequency ranges of a 
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pilot‟s command and the frequency range of desired model matching [Blue et al, 2002].  

Figure 11 shows the finalized architecture that accounts for a range of modeling 

uncertainties.   

 

Figure 11.  Pitch Axis Disturbance Observer Model and Controller 

Now that the architecture is finalized and a certain range of modeling uncertainties are 

accounted for, the design of the filter Q can be discussed. 

 2.3.2 The Filter Q. 

Using the methods of  parameter space control design, the filter Q can be 

designed to provide Robust Stability and Nominal Performance.  But first, taking a look 

at the input-output transfer functions associated with the proposed architecture provides 

insight about Q and the expected characteristics of the closed-loop system [Blue et al, 

2002].  In order to simplify the analysis, the initial architecture proposed in figure 8, prior 

to the addition of the multiplicative uncertainty, command weight and performance 

weight will be used. 

With this architecture, the transfer function containing the loop gain L   
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is useful when checking the stability of the closed loop system and will be addressed 

momentarily.  As far as the input-output relations go, the first transfer function of interest 

is the tracking transfer function H. 

 

Looking specifically at Q with a unity gain in the low frequency range, yields the desired 

input-output design objective as  .  The second transfer function is the 

disturbance rejection transfer function S with the following form: 

 

with  as the disturbance.  Again, looking at Q with a unity gain in the low frequency 

region indicates that good disturbance rejection is achieved as  .  The third transfer 

function is the sensor noise rejection transfer function T and has the following form: 

 

with  as the noise.  This time it is evident that Q, in the high frequency region ( ), 

provides the desired noise rejection as  .  The final input output relationship is 

simply the performance error transfer function of the following form: 
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Looking at the error transfer function in conjunction with the tracking transfer function 

indicates that Q needs to be a low pass filter with a unity gain which will drive the error 

to zero at low frequencies. 

 Now, knowing the form of Q to be a low pass filter of unity gain, we can proceed 

with the  parameter space control design.  It is imperative that for  to be realizable, 

Q must have at least the same degree as  [Ackermann, 2002].  Assuming that  is a 

second order transfer function Q would have the following form 

 

with the design parameters  and .  Using the  parameter space methods, the 

variables  and  are mapped into a plane of feasible solutions which are bounded by 

stability and performance conditions [Blue et al, 2002].  Using the finalized architecture, 

which contains the added uncertainties and weights, the following mapping conditions 

are used to guarantee Hurwitz and Robust Stability as well as Nominal Performance.  

 

 

 

Hurwitz Stability simply implies that the poles of the characteristic equation are all in the 

left half plane.  The roots of the characteristic equation contain the loop gain and can be 

found using .  Robust Stability 

bounds the solution space by including the multiplicative uncertainties that account for 
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modeling inaccuracies. Finally, Nominal Performance bounds the plane of feasible 

solutions by ensuring that both the command and performance characteristics fall within 

the desired frequency range.  The areas where all three parameter space conditions are 

met indicate the feasible region for variables  and , resulting in a filter Q with 

Robust Stability and Nominal Performance.   

2.4 Simultaneous Linear Equations 

 Solving a set of simultaneous linear algebraic equations is often used in 

conjunction with matrix operations to simplify both the annotation and computer 

computation.  The matrix form of a linear system of equations is , where A is a 

matrix of known coefficients corresponding to the vector of unknowns in x and b is a 

vector of known constants.  When it comes to the solution of , there can be one 

unique solution, an infinite number of solutions, or no solution [Brogan, 1991].  In order 

to determine what type of solution exists, an analysis on an augmented matrix defined by 

  can be conducted.  Comparing the rank of A (  with the rank of W  

indicates whether or not solutions exist [Brogan, 1991].  If , then no solution 

exists.  Likewise if , then at least one solution exists.  In an underdetermined 

case, the A matrix has more rows (m) than columns (n) and  indicating an 

infinite number of solutions.  On the contrary, when , one unique solution 

exists.  Or put another way, when the matrix A is square and nonsingular, the set of linear 

equations has one unique solution [Wylie, 1960].  The most common solution method 

involves the use of matrix inversion and takes the form .   
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 2.4.1 Least Squares Solution to the Over-determined Case. 

 The over-determined case exists when there are more equations than unknowns.  

No solution will exist if the equations are inconsistent.  Inconsistent equations arise due 

to inaccuracies in the measurements of b, or inaccurate assumed relationships between x 

and b expressed through A [Brogan, 1991].  In this case, an approximate solution to the 

vector x is the desired method.  The least squares approach provides an estimate of x by 

placing an equal weighting on all equations and assumes that the errors will average out.  

In the over-determined case, no one x can satisfy all simultaneous equations.  Therefore, 

the error vector e, now joins the linear system of equations in the form .  The 

goal of the least squares estimate is to minimize the sum of the squares of the  

components [Brogan, 1991].  In other words, x is estimated in order to minimize 

 

The solution to the least squares estimate can be found by formulating the following 

optimization problem written in standard form: 

 

Subject to: 

 

With a slight change of variables ( ), the problem can be formulated to find 

the x that makes the constraint  true.  If no x exists to satisfy the constraint, 

the minimization problem will find the x that makes  as close to zero as possible.  
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If a minimum does exist, the following gradient conditions must be satisfied from the 

Lagrangian,   

 

 

where  and  are partial derivatives of   and  is a Lagrange multiplier.  

Combining equations 39 and 40 yields:
 

 

Then, inserting equation 41 into 39 provides the solution to the minimization problem
 

  which really describes how  can be minimized by x.  

 

 2.4.2 Weighted Least Squares. 

 A weighted least squares approximation starts with equation 36 and continues to 

use all equations, but instead of equal weighting to all equations, a covariance matrix R is 

used to place weights on more reliable ones.  The covariance matrix represents the noise 

on the vector b [Brogan, 1991], and x minimizes the relationship 

 

Applying the method of orthogonal projections yields the weighted least squares solution 

shown below [Brogan, 1991]:  
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 2.4.3 Recursive Weighted Least Squares. 

 The least squares and weighted least squares process use batch processing to 

process all data equations in one batch.  The recursive weighted least squares process 

uses each new set of data as it is received [Brogan, 1991].  For example, assume a set of 

m measurements 

 

were used to solve for a weighted least squares estimate of x.  The solution x to the 

weighted least squares estimate is the same solution described above.  However, with the 

addition of a new set of data, the previous solution becomes 

 

and the new set of data becomes  

 

Where  is synonymous with the A matrix but corresponds to .   Combining the 

old and new data together, a new estimate of x, labeled , can be obtained which 

minimizes 

 

Where  is equivalent to  but applied to the new data .  The solution 

incorporating the new data is of the form 
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Where  and  which is 

available from .  If another set of data is used, the process can be continued on a 

recursive basis with the addition of  

 

to finish the process [Brogan, 1991]. 

 2.4.4 Discrete Kalman Filter. 

 A simple discrete Kalman filter is an extension to the recursive weighted least 

squares.  When data is received over a long period of time, one of the problems with a 

recursive weighted least squares estimation is that  gets very small.  This in turn 

causes the new Kalman gain, , to become small as well.  When this happens, 

corrections made to  in order to determine  become small and the filter fails to 

respond to new data [Brogan, 1991].  In order to fix this problem, data de-weighting is 

used.  Additive data de-weighting prevents the P matrix from getting too small and is of 

the form 

 

where Q is a positive definite matrix and  is the time step between samples.  The time 

step between samples accounts for the discritization of the Kalman filter which enables 

the filtering of digital signals.  The presence of additive de-weighting is felt in the 

Kalman gain shown below: 

 

  Combining this with equation 50 and substituting  for  yields  
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and completes the last step in a discrete Kalman filter process. 

 The bare essentials for creating a Kalman filter include knowledge (model) of 

system dynamics, initial conditions (estimated or actual), measurement characteristics, 

and statistical descriptions of uncertainties, noises, and measurement errors [Maybeck, 

1982].  The recursive steps above are an example of a discrete Kalman filter when P, Q, 

and R, are given the appropriate statistical interpretation [Brogan, 1991].  Kalman filters 

are used extensively in modern control theory to estimate variables of a linear system 

with noisy measurements [Brogan, 1991].  The noise is assumed to be white (not time 

dependent) and Gaussian (probability density at any point in time is bell-shaped).  The 

types of models used to estimate system dynamics are error and perturbation models 

[Maybeck, 1982].    

 When system dynamics are represented more appropriately by a nonlinear model, 

an extended Kalman filter may be used [Maybeck, 1982].   By substituting the nonlinear 

h for the linear H in equation 47,  

 

and taking the Jacobian of  with respect to x, yields 

 

which can be used to provide a perturbation measurement model [Maybeck, 1982].  In 

this case, , and provides a linear relationship between the measurements, 

z, and the state to be estimated, x [Kayton and Fired, 1997].  With this, the extended 
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Kalman filter also requires an update to   (equation 49) as shown below [Maybeck, 

1982]:  

 

 2.4.5 Statistical Analysis of Kalman Filters. 

 The estimates produced from Kalman filters can vary based on many 

uncertainties.  Therefore, to truly determine the overall performance of a Kalman filter, it 

is recommended that an ensemble average of many runs (15-25 are typical for aerospace 

applications) be accomplished [Maybeck, 1982].  An ensemble average is the average of 

each data point correlating to a specific time over all runs.  With an ensemble average 

calculated, a temporal average (single average over entire runtime) can be used to obtain 

a single value that attempts to describe the performance of a filter.  Standard deviations 

can also be used to help determine how well the filter is tuned.  The “ability to provide a 

realistic performance evaluation of a proposed filter design is an integral part of the 

iterative design process” and is essential when tuning a Kalman filter [Maybeck, 1982].  

Ultimately, the primary objective of analyzing Kalman filter data is to tune the filter such 

that it yields the best estimation performance possible.  

2.5 Cooper-Harper Ratings and Pilot-Induced Oscillation Ratings 

 Pilot opinion of aircraft performance is an essential part of aircraft design and 

testing.  Together, the pilot and aircraft form a system which must perform at an adequate 

level in order to complete the mission.  Since the pilot is ultimately responsible for 
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mission accomplishment, his/her opinion matters [Liebst, Summer Quarter 2007].  A 

pilot‟s opinion on how an airplane flies is still the best source of information 

[Hodgkinson, 1999].  This information is best categorized using the Cooper-Harper 

Handling Qualities Rating Scale. 

 The Cooper-Harper (CH) scale is universally used to enable the pilot to award a 

number corresponding to how an aircraft handles.  The goal of this number is to make 

comparisons between aircraft and/or to show compliance with a specific handling task.  

Handling tasks are flown under various conditions in order to determine the Handling 

Qualities of an aircraft.  Handling Qualities are those qualities or characteristics that 

govern the ease and precision with which a pilot is able to perform the tasks required in 

support of the aircraft mission [Cooper-Harper, 1989].  An example of the Cooper-Harper 

Handling Qualities Rating Scale is illustrated in Figure 12. 
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Figure 12.  Cooper-Harper Handling Qualities Rating Scale 

The CH scale has ten points ranging from 1 (best) to 10 (worst).  Evaluation Pilots arrive 

at one of these points by answering a series of questions regarding task performance and 

pilot workload.  Even though the CH scale improves repeatability by leading the pilot 

through a series of decisions, it is still not perfect. 

 This imperfection is brought about by the nature of humanity.  Human opinions 

can vary based on subtle changes in pilot behavior, pilot distractions, fatigue, and a host 

of other poorly-understood, interacting factors [Hodgkinson, 1999].  In an attempt to 

mitigate these factors, Bailey recommends the following format for evaluation: 
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1.  Perform the task 
2. Comment extemporaneously during the task 
3. Assign an initial rating using the Cooper-Harper decision tree 
4. Give detailed comments using the provided comment card 
5. Give the formal rating:  then the quantitative performance is revealed to the 

pilot.  
 
Using this method does not guarantee reliable and repeatable results but it does take steps 

towards mitigating the risk of scattered CH ratings.  Even so, the most important 

information gathered during a handling qualities task evaluation is not the CH rating 

itself, but the pilot comments associated with the CH rating. 

 Another scale used to assess the flying qualities problems that arise is the Pilot-in-

the-Loop Oscillation (PIO) scale.   

 

Figure 13.  Pilot-in-the-Loop Oscillation Scale 
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This scale, similar in design to the CH scale, helps identify the flying qualities problems 

that cause PIOs [Hodgkinson, 1999].  PIOs are unintentional sustained oscillations that 

result from the efforts of a pilot to control the aircraft.  PIOs are most often associated 

with “high-gain tasks” (challenging tasks) or events that cause a pilot to suddenly and 

dramatically increase his/her gain [Leggett, 2007].  A combination of increased pilot gain 

and phase lags associated with modern fly-by-wire control systems or actuator rate limits 

are some of the key ingredients making aircraft prone to PIOs. 

 Because the pilot opinion matters, the Pilot-in-the-Loop Oscillation scale and the 

Cooper-Harper Handling Qualities Rating Scale will be around as long as pilots are 

controlling aircraft.  Combining the PIO scale and the CH Handling Qualities Rating 

scale gives valuable pilot feedback on aircraft performance and handling qualities that 

cannot be ignored.   

2.6 Summary 

This chapter presented the technical and mathematical background material 

necessary for understanding the development of each standby-gain-scheduling method 

presented in Chapter 3.  The development of the alternative methods to standby-gain-

scheduling will build upon the basic concepts, terminologies and aircraft systems 

presented in this chapter.   
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3.0. Methodology 

3.1 Chapter Overview 

 The purpose of this chapter is to describe the test methodology, explain the 

controller development process and present initial desktop simulation results for each 

standby-gain-scheduled controller.  The test methodology for the entire thesis used a 

build-up approach that progressed through desktop simulation, transitioned to high-

fidelity simulation in the Infinity Cube, and ended with the post-processing of actual 

aircraft data (for VEST 2 only).  The controller development built upon the basic 

fundamentals described in Chapter 2 to develop each of the alternative methods of 

standby-gain-scheduling control (velocity estimation control, inertial velocity control and 

disturbance observer control).  Initial desktop testing was accomplished to prepare the 

standby-gain controllers for the Infinity Cube simulator testing.  The preliminary results 

from computer desktop simulations along with a detailed explanation of each standby-

gain-scheduled controller are presented in the individual controller sections of this 

chapter.  

3.2 Test Methodology 

In general, the test methodology utilized a build-up approach that began with 

desktop simulation; transitioned to pilot-in-the-loop desktop simulation; and culminated 

with a high-fidelity, pilot-in-the-loop simulation in the Infinity Cube simulator at Air 

Force Research Laboratory/RBCD facility.  Initial desktop computer simulations were 
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run to verify the DO and VEST 2 method of control.   The velocity estimation algorithms 

were tested using a point mass model to down select methods of estimation.  Then the 

velocity estimator algorithms were tested using a six-degree-of-freedom, Stevens and 

Lewis, non-linear F-16 model in conjunction with the Aviation Visual Design Simulator 

(AVDS) to provide a pilot-in-the-loop desktop simulator [Rasmussen Simulation 

Technologies, 2006].  The disturbance observer controller also used AVDS in 

conjunction with the Stevens and Lewis model to obtain a first-look at the DO controllers 

handling qualities.  These test prepared the velocity estimator algorithm controller and 

the DO controller for implementation and follow-on simulator testing conducted in the 

Infinity Cube simulator at the Air Force Research Laboratory/RBCD building.  In the 

Infinity Cube simulator, the inertial controller was also implemented so that each of the 

alternatives to standby-gain-scheduling (velocity estimation control, inertial velocity 

control, and disturbance observer control) could be compared with a baseline block 40 F-

16C controller.  In addition to simulator testing, actual aircraft data were post-processed 

with the VEST 2 algorithm to validate the simulator results for the velocity estimator 

algorithm.  The development of each method of standby-gain-scheduling control and the 

results of the initial desktop simulation are presented in this chapter.  The results of the 

Infinity Cube simulator testing and the VEST 2 validation are presented in Chapter 4. 

3.3 Gain-Scheduling with Estimated Airspeed 

 The first method of standby-gain-scheduling uses estimated velocity to calculate 

the dynamic pressure used to schedule gains.  Following an air data system failure, the 

velocity estimating algorithm (VEST 2), which is a modified version of the McLaren‟s 
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velocity estimator (VEST) [McLaren, 2008], uses the remaining available data to 

estimate velocity. The estimated airspeed controller uses a geometric relationship 

between inertial velocities, wind and true airspeed combined in an algorithm that 

provides estimates of current wind and true airspeed.  Various geometric relationships 

were explored in order to determine the best method for estimating velocity. 

 3.3.1 Three Vector Approach. 

 The three vector method combines the velocity triangles associated with three 

separate measured groundspeed velocity vectors into the figure below [Gray, 1998].  

 

 

 

With the head of each groundspeed vector superimposed at a single point, the tails all lie 

on a circle with a radius equivalent to the TAS.  The wind vector completes the three 

 VW 

 VG3 

 VG2 

 VG1 
Radius = VT 

Figure 14.  Three Vector Velocity Triangle 
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velocity triangles by connecting the TAS vector at the center of the circle with the tips of 

the ground speed vector [Gray, 1998].  This relationship holds when all three recorded 

ground speed vectors meet the following constraints:  heading stabilized; same true 

airspeed and altitude; same throttle setting; and no sideslip.  The final assumption, critical 

to this geometric analysis, is that the wind vector is constant.  This allows the wind vector 

to be shared by all three velocity triangles.   

 With this relationship and at least three measured ground velocity vectors, the 

equation for a circle can be used in a least squares process to estimate the north and east 

components of true and wind speed [McLaren 2008].  Together, these components make 

up the horizontal component of the true velocity vector and wind vector.  Extending this 

process to the third dimension allows for the calculation of the complete true and wind 

velocity vectors.  In this case, the equation of a sphere  

 

combined with the batch processing power of a least squares estimator can be used to 

estimate the north, east, and down components of TAS and wind speed.  If the origin of 

the coordinate system associated with the sphere is located at the tip of the ground 

velocity vectors and the tail is described by where  defines the 

number of ground velocity vector samples, and the center of the sphere is defined by 

  then  can be estimated to find the sphere of best fit to the ground velocity 

vectors.  When the sphere equation is expanded out and grouped to isolate knowns and 

unknowns you get 
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.  

When implemented in a least squares batch process, A becomes known coefficient 

matrix, b is a vector of measurements, and x is the vector of unknowns.  The solution to 

this problem as described in section 2.4.1 has the following form   
 

 

which yields estimated values of x that minimize the error in fitting a sphere to ground 

velocity vectors.  Finally, from x, all components of wind speed and TAS can be 

calculated using the velocity triangle relationship. 

 3.3.2 Two Vector Approach. 

 Another method used to estimate velocity is a subset of the three vector method 

that uses two ground vectors and two aircraft heading measurements [McLaren, 2008].  

This method was designed to eliminate the constant true airspeed constraint [McLaren, 

2008], a necessary step when talking about a modern-day advanced fighter flight 

envelope.  This method uses aircraft headings from true north and inertial velocities 

available from the onboard INS.  When combined together, as in the three vector case, 

the following geometry results.   
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Input headings define the direction from the tails of the ground velocity vector to the true 

velocity vectors, and the heads of the true velocity vectors intersect at the tail of the wind 

vector.  As aforementioned, the largest constraint was removed by eliminating the need to 

have TAS be constant.  However, this methodology does have a limitation in that it 

assumes there is no vertical component of wind.  This assumption yields a two 

dimensional solution by equating the down component of true airspeed to the down 

component of inertial airspeed.  Realistically, this is not a bad assumption as the majority 

of winds run parallel to the surface of the earth. 

 The solution to the two vector approach is developed from the figure 16.   

VG 2 

VG 1 

(0,0) 
VW 

VT 1 

VT 2 

Heading 2 

Heading 1 

NN  

Figure 15.  Two Vector Velocity Triangle 
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The point  is located at the intersection of the true airspeed vectors.  The tails of 

the ground velocity vector define the points  and  respectively.  If more 

ground velocity vectors were available, the process would continue with additional input 

angles and ground velocity vectors.   

 A least squares approach similar to the three vector approach was developed by 

McLaren and is formed from the following equations: 
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Figure 16.  Sampled Two Vector Approach 
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where  is the heading from true north to the true velocity vector, and  is the heading 

from true north to each ground velocity vector.  Using a few substitutions and equation 

manipulations, the final relationship can be put in terms of knowns and unknowns. 

 

Written in the form  yields 

 

where .  Using the solution to the least 

squares approximation, ,  provides an estimate of the horizontal wind 

speed components.  Using this estimate with the known ground velocity vectors and 

assuming no wind speed in the vertical, the velocity triangles provide the relationship 

from which to estimate the components of true airspeed.        

 3.3.3 Kalman Filter Approach. 

 A recursive weighted least squares Kalman filter, as described in section 2.4.3, 

was integrated in both the two vector [McLaren, 2008] and three vector methods so a 

comparison could be drawn between their velocity estimation capabilities.  The process 

by which both methods were integrated into a Kalman filter will be shown below and 

then some preliminary results obtained from a desktop simulation will be discussed.  

 As stated in the two vector method, the estimated values are the north and east 

components of wind speed.  Defining these states in terms of the Kalman filter process, 

leads to the following estimated state vector, .  Recall from the development 

of the two vector method that the heading from true north to the velocity vector, and the 
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north ( ) and east ( ) ground speed components were known or derived from 

measured quantities.  In terms of the Kalman filter, these are the known inputs.  The 

heading of the true airspeed vector, considered the measurement, is derived from 

measured and estimated quantities as follows: 

 

The measured inertial heading from the INS measures heading from true north to the 

body fixed frame x-axis.  During turns, this measurement is slightly different from the 

heading of the true velocity vector.  The quantity  accounts for this 

difference by accounting for the sideslip, roll, and bank encountered during turns 

[McLaren, 2008].  When this term is included, the measurement now becomes 

 

which represents the measured heading from true north to the true velocity vector.  

Incorporating this measurement into the Kalman filter yields 

 

 

 where  is a nonlinear perturbation measurement model.  In order to account for the 

non-linearities in the measurement model, the recursive weighted least squares Kalman 

filter now becomes an extended (discrete) Kalman filter.  Recalling from section 2.4.4,  

is used to define the linear relationship between the measurements, z, and the state to be 

estimated, x [Kayton and Fired, 1997].  This relationship defines H as 
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and is the last relationship needed to complete the extended Kalman filter process.  

Finally, because  is a perturbation model, the states‟ initial conditions must also be 

in the form of perturbations.  Assuming a linear lapse rate of winds ( ) with 

respect to an aircraft‟s change in altitude [McLaren, 2008], provides a simple model of 

the form 

 

and gives estimated initial conditions in the form of deltas.  The remainder of the process 

is the same as defined in section 2.4.4 and is listed below: 

 

 

 

For this problem, P is the error covariance matrix, Q is the growth in the wind estimate 

uncertainty, and R is the noise on the input heading measurement.  This extended Kalman 

filter continuously estimates  and   with each new measurement taken.  Then, 

using the velocity triangle relationship, the true velocity vector is computed in the same 

manner as the two vector least squares estimate.  With the exception of an adjustment to 

the wind lapse rate, the Kalman filter above is the velocity estimator, VEST, developed 

by McLaren. 
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 One of the weaknesses of the VEST algorithm is its dependence on aircraft 

heading.  First, VEST must have an accurate method for obtaining heading 

measurements.  This is not a problem with a GPS aided INS described in section 2.2.6.  

The second limitation is that VEST must have heading changes in order to accurately 

estimate the wind velocity vector.  VEST is also dependent upon alpha and beta, which is 

typically obtained through the Pitot static system.  Finally, in order to keep VEST from 

failing to respond to changing wind conditions, it becomes extremely sensitive to high-g 

rapid onset maneuvers.  

 In an attempt to improve upon the limitations of VEST, a Kalman filter version of 

the three vector method is presented below.  The advantages of the three vector method 

include no heading measurements required, vertical component of wind is not assumed 

zero, INS measurements required for estimation are readily available, and there are no 

Pitot static system dependent variables required for estimation.  

Starting with the three vector relationship, the estimated state  

                                         

is comprised of interrelated components of wind speed and true airspeed magnitude.  The 

states are then estimated from the following relationship previously developed in section 

2.4.4:  
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where  is the negative groundspeed measurement, .  In terms of 

the Kalman filter, this measurement yields 

 

Where  is a nonlinear perturbation measurement model.  Knowing this,  is 

used to describe a linear relationship between the measurements described by z, and the 

estimated state. 

 

Finally, because  is a perturbation model, the states‟ initial conditions must also be 

in the form of perturbations.  Various methods of calculating perturbation initial 

conditions were tried.  However, the best results were obtained when all perturbation 

initial conditions were set to zero.  With the initial conditions set to zero, the following 

equations below complete the Kalman filter process: 

 

 

 

Using a point mass model, a comparison was drawn between the least squares 

three vector estimate, the VEST two vector method Kalman filter and the three vector 

Kalman Filter.  The inputs to the point mass model were designed to test the assumptions 

associated with each filter.  In particular, the largest assumption tested was how the 
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performance of the three vector method would be affected by varying true airspeed.  The 

plot below shows the error between the actual and estimated values of wind heading.  

 

Figure 17.  Estimated Wind HDG Error (Desktop Simulation) 

Even though significant improvement was made between the least squares three 

vector estimation and the three vector Kalman filter version, it still did not perform as 

well as VEST.  Looking at the wind speed error between the three estimators showed 

similar results. 
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Figure 18.  Estimated Wind Speed Error (Desktop Simulation) 

There are a couple explanations as to why this occurred.  First, violating the assumption 

that all three ground speed vectors were recorded at the same true airspeed creates 

problems with the estimation.  Second, the addition of the unknown variable  

increases the design space allowing for a wider variation in estimated answers.  The 

vertical wind heading, defined by , is a function of    A 

plot below of the estimated vertical wind heading has large variations, contributing to the 

error in estimated wind speed and heading.    
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Figure 19.  Estimated Gamma Wind Error (Desktop Simulation) 

As a result of this preliminary study, the VEST algorithm was chosen for implementation 

and further refinement. 

 Using the VEST algorithm as a starting point, and posing the problem in a way 

that directly estimated and , allowed for a slightly different implementation 

of the two vector method.  First, estimating the components of true airspeed instead of 

wind speed required some adjustment to the VEST algorithm.  The basic principle behind 

the two vector method remained the same, but instead of using equation 66 as the starting 

point, the following form was used: 
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Then, instead of using a linear lapse rate of winds with respect to an aircraft‟s change in 

altitude as the perturbation initial conditions [McLaren, 2008], perturbation initial 

conditions using the change in ground speed components was used to estimate the change 

in TAS components. 

 

  Finally, the linear relationship between the measurements and the states,  was 

calculated as follows. 

 

The rest of the Kalman filtering process remains the same as described in VEST but 

instead of using the velocity triangle to calculate the true airspeed components, the 

velocity triangle is used to calculate the wind speed components. 

 This subtle difference in solving the two vector problem has a distinct advantage 

when it comes to modern high-performance aircraft.  High-performance aircraft can lose 

50 knots per second or more in level high-g turns.  So, instead of using a perturbation 

model that supplies initial conditions based on the changes in aircraft altitude, this model 

represents changes in true airspeed and may provide a more accurate estimate of TAS 

during high-g aircraft maneuvering. 

 Finally, a combination of both VEST, which estimates wind speed based on a 

change in altitude, and the VEST TAS Kalman filter just described, yields VEST 2 

shown in figure 20.  
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Figure 20.  VEST 2 

 By taking the average of the two outputs, VEST 2 attempts to take into account not only 

the wind speed changes associated with an altitude change but also the true airspeed 

changes associated with high-g maneuvering.  A computer simulation and comparison 

between all three methods (VEST, VEST 2, and VEST TAS) will be described in the 

following section.     

3.3.4 Desktop Simulation Wind Estimation Results. 

A desktop computer simulation using Simulink© and the Stevens and Lewis 

nonlinear F-16 model was used to conduct preliminary testing on VEST, VEST TAS, and 

VEST 2.  Recall from section 3.3.3 that VEST estimates wind speed based on a change in 

altitude, VEST TAS estimates wind speed based on a change in inertial velocities and 

VEST 2 simply averages the outputs of VEST and VEST TAS.  For simulation purposes,  

a nonlinear wind model illustrated in Figure 21 was added to the Steven and Lewis 

nonlinear simulation so that the effectiveness of each estimator could be tested.  
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Figure 21.  Wind Model Profile 

Figure 21 also shows the linear lapse rate model used in the VEST algorithm.  The wind 

speed, as depicted above, varied as a function of altitude and the wind heading varied as a 

function of time (sine wave with heading ± 10 deg).  Additionally, a proportional auto-

throttle based on velocity feedback was used.  When maneuvering, the auto-throttle 

would attempt to keep the aircraft at the equilibrium airspeed.  However, during the 

profile, the maneuvers flown would exceed the capabilities of the auto-throttle and 

airspeed would increase or decrease.  Because of the maneuvers flown, a wide range of 

airspeeds were covered on each profile.  This was essential in testing the effectiveness of 

the estimators during aggressive flight in a large flight envelope.     
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The outputs to the nonlinear F-16 model were tied into the Aviation Visual Design 

Simulator (AVDS) which allowed a simulated F-16 to be flown around with a 

Sidewinder Precision 2 Joystick.  Using this joystick provided the first real feedback with 

a pilot in the control loop.  A series of four different flight profiles with different initial 

conditions were flown and pilot control inputs were recorded.  Each profile lasted 10 

minutes and included maneuvers flown at varying g‟s, airspeeds and altitudes.  Over all 

four flight profiles, the maneuvers flown included level turns, loops, split S‟s, pitchbacks, 

slicebacks, barrel rolls, turn reversals, wings level climbs, turning climbs, and straight 

and level flight.  Each flight profile contained most of the maneuvers but not every 

profile contained all the maneuvers. 

Additionally, all profiles flown were started with a different wind direction.  The 

initial wind directions were 023, 157, 203 and 337.  Flying each profile at each start 

heading produced 16 total runs.  Using the calculated wind error, an ensemble average 

(average of each data point associated with a specific time) of the 16 runs was taken and 

then the temporal average and standard deviations were calculated from the ensemble 

average.  The results for the VEST wind speed estimate are shown in Figures 22 and 23 

respectively. 
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Figure 22.  VEST Wind Speed Error 

 

Figure 23.  VEST Wind HDG Error 
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It is obvious that the results obtained from the preliminary three-degree-of-

freedom point mass simulation were not as accurate when implemented into a six-degree 

of-freedom simulation.  However, as mentioned in section 3.3.3, the VEST, VEST TAS, 

and VEST 2 algorithms are extremely sensitive to high-g rapid onset maneuvers at high 

flight path angles.  To fix this problem, limits were placed on the residual, of the VEST, 

VEST TAS, and VEST 2 Kalman filters.  The residual is the difference between the 

measurements and the estimates of those measurements  

 

and provides a measure of correction used to update the propagated states.  The limits 

placed on the residual were associated with flight path angle which enabled the filter to 

maintain responsiveness while simultaneously preventing large fluctuations caused by 

rapid onset, high-g maneuvers at high flight path angles.  Figures 24-29 show the results 

for VEST, VEST TAS, and VEST 2 with the new residual logic. 
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Figure 24.  VEST Wind Speed Error with Residual Logic 

 

Figure 25.   VEST Wind HDG Error with Residual Logic 
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Figure 26.  VEST TAS Wind Speed Error with Residual Logic 

 

Figure 27.  VEST TAS Wind HDG Error with Residual Logic 
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Figure 28.  VEST 2 Wind Speed Error with Residual Logic 

 

Figure 29.  VEST 2 Wind HDG Error with Residual Logic 
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The results of the three estimators are compiled into a table below.   

Table 2.  Wind Estimator Results (Measured Alpha and Beta) 

Measured Alpha and Beta VEST VEST TAS VEST 2 

Wind Speed Error Temporal Average 

(ft/sec) 
3.893 -0.4083 1.742 

Wind Speed Error Standard Deviation 

(ft/sec) 
±4.415 ±10.5 ±5.462 

Wind Heading Error Temporal Average 

(deg) 
0.2724 0.5901 0.4313 

Wind Heading Error Standard Deviation 

(deg) 
±4.334 ±6.43 ±2.857 

 

Now that the results looked reasonable in VEST, VEST TAS, and VEST 2, an attempt 

was made to remove the alpha and beta dependency in each estimator.  Recall from 

equation 66, the quantity  adjusts the measured heading from true 

north in order to account for the sideslip, roll, and bank encountered during turns 

[McLaren, 2008]. Since, alpha and beta are usually part of the Pitot static system, 

removing their inputs to the velocity estimators attempts to simulate an actual air data 

system failure.  Table 3 shows the results from the same 16 runs accomplished earlier 

with no alpha and beta measurements available. 
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Table 3.  Wind Estimator Results (No Alpha and Beta) 

No Alpha and Beta VEST VEST TAS VEST 2 

Wind Speed Error Temporal Average 

(ft/sec) 
31.9156 24.0380 27.9768 

Wind Speed Error Standard Deviation 

(ft/sec) 
±16.5286 ±13.0558 ±13.1726 

Wind Heading Error Temporal Average 

(deg) 
77.7446 82.9833 80.3639 

Wind Heading Error Standard Deviation 

(deg) 
±53.9652 ±64.7452 ±59.0462 

 

Quantities indicated in bold italics appeared to be divergent when plotted.  The results 

from this run indicate that alpha and/or beta were critical to the success of all three 

estimators.   

 Since alpha and beta are essential, a simple estimator was developed using 

equations 15 and 16 and substituting the TAS velocity components (  with inertial 

velocity components ( ) [McLaren, 2008].  Recall that both alpha and beta are 

functions of the body-fixed frame velocities.  The inertial velocity components are part of 

the navigation frame.  A conversion from the navigation frame to the body frame 

[Stevens and Lewis, 2003] of the form  

 

can be used with the yaw angle ( ), pitch angle ( ), and roll angle ( ) to correct from the 

navigation frame to the body frame.  With this conversion, the estimated body 

components become  
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 and when combined with the alpha and beta equations produce the estimates listed 

below. 

 

 

These estimates were used in the VEST, VEST TAS, and VEST 2 algorithms.  Table 4 is 

the result of the 16 runs described above with estimated values of alpha and beta.     

Table 4.  Wind Estimator Results (Estimated Alpha and Beta) 

Estimated Alpha and Beta VEST VEST TAS VEST 2 

Wind Speed Error Temporal Average 

(ft/sec) 
22.6815 14.4442 18.5629 

Wind Speed Error Standard Deviation 

(ft/sec) 
±28.2473 ±24.487 ±25.4451 

Wind Heading Error Temporal Average 

(deg) 
71.9580 -25.414 23.2720 

Wind Heading Error Standard Deviation 

(deg) 
±65.6092 ±56.858 ±57.8454 
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The estimated values in Table 4 are not great, but there was some improvement over the 

previous case.  In fact, all the headings estimated by the VEST algorithms went from 

being divergent to non-divergent.  In order to determine if one estimate was more 

important than the other,  was used with .  The results of these 16 runs are 

displayed in Table 5. 

Table 5.  Wind Estimator Results (Estimated Alpha, Beta = 0) 

Estimated Alpha (Beta = 0) VEST VEST TAS VEST 2 

Wind Speed Error Temporal Average 

(ft/sec) 
22.8876 13.4124 18.15 

Wind Speed Error Standard Deviation 

(ft/sec) 
±15.0974 ±16.304 ±14.2162 

Wind Heading Error Temporal Average 

(deg) 
56.906 -9.7440 23.581 

Wind Heading Error Standard Deviation 

(deg) 
±41.0665 ±59.7321 ±48.2201 

 

This showed some promise as all three estimators were definitely non-divergent with 

improved accuracy over an alpha and beta estimate.  However, the variability of the 

estimated wind heading still needs improvement.  Finally, holding alpha at zero and 

estimating beta produces the results listed in the Table 6. 
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Table 6.  Wind Estimator Results (Estimated Beta, Alpha = 0) 

Estimated Beta (Alpha = 0) VEST VEST TAS VEST 2 

Wind Speed Error Temporal Average 

(ft/sec) 
62.4971 49.4777 55.9874 

Wind Speed Error Standard Deviation 

(ft/sec) 
±33.0942 ±26.837 ±29.0576 

Wind Heading Error Temporal Average 

(deg) 
-62.1054 -14.5156 -38.3105 

Wind Heading Error Standard Deviation 

(deg) 
±114.0008 ±84.6579 ±98.5504 

 

Again, quantities indicated in bold italics appeared to be divergent when plotted.  These 

results are unsatisfactory as all three estimators diverged in heading.   

 Based on this comparison, the best approach appeared to include the use of a 

measured alpha and beta.  In any other method, the wind heading variability was rather 

large and undesirable.  Thus, the actual alpha and beta measurements were used in further 

testing under the assumption that there is a method of accurately measuring alpha and 

beta.   

 All three Kalman filters had similar results.  Therefore, under the premise that a 

robust Kalman filter capable of estimating velocities both as a function of changes in 

altitude and as a function of changes in true airspeed, VEST 2 will be used for further 

testing.  

 The desktop simulator was setup such that the last know wind and true airspeed 

components were sent to the VEST 2 wind estimator after a simulated air data system 

failure (simulated failure occurred one second into the run).  To check the robustness of 

VEST 2, false initial conditions were sent to VEST 2 using the same 16 runs discussed 
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earlier.  The intent was to see how long it would take VEST 2 to converge on the actual 

wind velocity vector.  Figures 30 and 31 are plots of both the ensemble wind speed and 

ensemble wind heading errors for false initial conditions. 

 

Figure 30.  VEST 2 Wind Speed Error (False Initial Conditions) 
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Figure 31.  VEST 2 Wind HDG Error (False Initial Conditions) 

It was apparent that VEST 2 started to produce good estimates around 200 seconds and 

converged by 400 seconds.  This showed that VEST 2 was capable of functioning even if 

passed incorrect initial conditions.  Knowing this opens the possibility for VEST 2 to 

function as a back-up system that continuously runs from take-off to landing without the 

need for last know conditions.  In just a little over three minutes of flight, VEST 2 was 

capable of producing valid estimates necessary to correctly schedule gains.  
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3.4 Gain-Scheduling with Inertial Velocities  

 The second method of standby-gain-scheduling is extremely simple.  After an air 

data system failure, assume a standard atmosphere to estimate density and simply use 

inertial velocities or GPS velocities to calculate an inertial dynamic pressure ( ). 

 

  Then use this inertial dynamic pressure to schedule aircraft gains.  The underlying 

assumption is that even though winds are present in inertial velocities, they are usually 

much smaller than the aircraft‟s true airspeed velocity vector.  Thus, if we drive the gains 

with something close to actual dynamic pressure, the aircraft performance should be 

similar to the performance of an aircraft scheduled with actual dynamic pressure.   

3.5 Flight Control without Gain-Scheduling (Disturbance Observer)  

 The third method of standby-gain-scheduling following an air data system failure 

is through the use of a disturbance observer (DO).  The object of this controller is to 

produce the desired response throughout a large flight envelope regardless of the 

aircraft‟s airspeed or altitude.  As described in section 2.3.1, the DO controller to be 

tested in this thesis was designed for the flight envelope  feet and 

.  Below is a plot of the specific dynamic pressure changes associated with 

this envelope. 
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Figure 32.  Tested Dynamic Pressure Envelope  

The wide variance in dynamic pressure would normally require gain-scheduling to 

provide the desired aircraft response throughout the design flight envelope.  But with 

proper implementation of the DO, a modern high-performance aircraft can achieve the 

desired performance without the need to gain-schedule. 

 3.5.1 Pitch Axis Design. 

The process described in section 2.3 describes the methodology used by Blue et al 

to design a large envelope DO controller for the pitch axis.  Recalling that the pitch-rate 

(q) was chosen as the feedback variable meant that the desired dynamics needed to be 
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chosen in terms of pitch-rate.  The desired dynamics ( ) for the pitch axis were chosen 

to meet the Level 1 pitch-rate command tracking criteria described in Table 1.  A second 

order transfer function of the form  

 

with  and  was selected [Blue et al, 2002].  A step input to this transfer 

function (Figure 33) was accomplished to determine if the response met the MIL-STD-

1797B minimum requirements for Level 1 pitch-rate command tracking.  

 

Figure 33. Step Response to Desired Pitch-Rate Dynamics  
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The results to this step input show that    and   .  

For  , the largest velocity associated with the design flight envelope will give 

the smallest .  This occurs at M = 0.8 and h = 5,000 feet where   .  

For , the lowest velocity associated with the design envelope will give the 

largest .  This occurs at M = 0.4 and h = 25,000 feet where  .  

Ensuring that   is between these two bounds along with the other criteria 

above specifies Level 1 pitch-rate flying qualities. 

 Now that the desired dynamics are set, the model development described in 

section 2.3.1 is the same.  Recall, figure 11 represented the finalized architecture and 

included modeling uncertainties ( ), command weights ( ) 

and performance weights ( ) [Blue et al, 2002].  Using this model, the 

filter  can be determined using the methods of  parameter space control design.  

Recalling that  must be at least the same order as , a second order transfer 

function of similar form was chosen. 

 

The sensitivity analysis described in section 2.3.2 was used to select the values 

 and  [Blue et al, 2002]. 

 Now that all the values of the pitch axis DO are known, a comparison was made 

at the four corners of the flight envelope between the open loop dynamics and the closed 

loop DO controlled dynamics.  To do this, a unit step input was commanded to the 
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elevator command input of a Stevens and Lewis non-linear F-16 model.  The open loop 

results are illustrated in figure 34. 

 

Figure 34.  Open Loop Elevator Step Response 

It is evident from the open loop step command that the dynamics vary significantly over 
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Figure 35. Disturbance Observer Elevator Step Response 

Now the dynamics are very similar and provide the desired pitch-rate responses at each of 
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2.2.4, a simple transformation from the body axis to the stability axis involves the 

measured angle, alpha, and the body axis roll (p) and yaw (r) rates.  Defining  as  

 

provides the roll rate command necessary to roll about the stability axis [Honeywell, 

1996],  which helps minimize changes in AOA during rolling maneuvers.  Below is a 

figure showing the roll DO controller 

 

Figure 36.  Roll Axis Disturbance Observer Controller 

where  is defined as the desired aileron command sent to the aileron actuator in order 

to obtain the desired roll rate.  Even though lateral and directional characteristics are 

interrelated, roll will be assumed independent of yaw and designed separately.  

Therefore, looking only at roll and knowing that the approximation of the aileron-to-roll-

rate transfer function is first order [Stevens and Lewis, 2003], the desired dynamics for 

roll will be of the form 
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where  is a gain placed on the desired dynamics and  represents the roll mode 

time constant.  There is considerable data relating the roll time constant associated with 

roll damping and pilot rating.  From MIL-STD-1797B, the roll mode time constant 

associated with fighter aircraft in the most demanding phase of flight must be less than 

1.0.  Aircraft manufacturers have even gone as far to say that fighter aircraft should have 

a roll mode time constant between 0.6 and 0.8 seconds [MIL-STD-1797B, 2006].  Based 

on this information,  was set to 0.8 seconds.  For the filter, , once again the 

same order transfer function was chosen and is of the form  

 

Setting  yields a low pass filter capable of damping out roll rate overshoots.   

Finally, combining the desired dynamics and the roll filter into the roll DO, an 

analysis was performed using the non-linear Stevens and Lewis F-16 simulation.  In the 

simulation, full deflection aileron step inputs were used to find the right gain ( ) 

necessary to meet the roll performance criteria for a fighter type aircraft.  Taken from 

MIL-STD-1797B, Table 7 indicates the required time to achieve a stated bank angle 

change in a fighter-type aircraft that should result in Level 1 flying qualities. 
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Table 7.  Roll Performance 

 

The values for and  are dependent upon the maneuver being flown (air-to-air 

combat, ground attack, weapon delivery, air-to-air refueling, etc.).  This research is 

primarily concerned with Category A phases of flight (flight phases that require rapid 

maneuvering, precision tracking, or precise flight-path control) [MIL-STD-1797B, 2006].  

Therefore, the objective was to meet all the values specified under the Category A 

column in the design flight envelope  feet and .  The 

results of the full deflection aileron step inputs produced a .   

 Once again, now that all the values of the roll axis DO are known, a comparison 

was made at the four corners of the flight envelope between the open loop roll dynamics 

and the closed loop DO controlled roll dynamics.  To do this, a unit step input was 

commanded to the aileron command input of a Stevens and Lewis non-linear F-16 model.  

The open loop results are illustrated in figure 37. 



 

85 

 

Figure 37.  Open Loop Aileron Step Response 

As expected, the dynamics at each corner of the flight envelope are significantly 

different.  However, wrapping the roll DO controller around the open dynamics produces 

the closed loop dynamics in Figure 38. 
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Figure 38.  Disturbance Observer Aileron Step Response ( ) 
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Figure 39.  Desired Roll Rate Dynamics 

 Since a value of one was arbitrarily chosen for  to produce a low pass filter, a 
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Figure 40.  Disturbance Observer Aileron Step Response ( ) 
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pilot-in-the-loop simulation highlighted key information not initially apparent with the 

step input analysis.  When , the simulated F-16 appeared to continue rolling past 

the desired bank angle when control input was removed.  However, when the filter with 

 was used, the aircraft roll rate would stop soon after the control input was 
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step input is more gradual in the  than in the .  Having flown in fighter 

aircraft and knowing how important it is to be able to set the desired bank angle, the roll 

filter with  was used for implementation.   

 3.5.3 Yaw Axis Design. 

 As mentioned earlier, unlike the longitudinal axis, the lateral-directional axis does 

not easily separate into factors that define each mode [Stevens and Lewis, 2003].  In this 

regard, roll-yaw coupling exits.  In an attempt to account for this, the command variable 

chosen must be able to produce yaw when the rudder pedals are pushed but also interact 

with the roll axis to maintain coordinated flight during aileron inputs.  Several methods of 

feedback systems exist that allow for the interrelationship between the lateral and 

directional axes.   

The first method is a beta ( ) command feedback system.  This method is 

probably the most logical in that when an aileron deflection is commanded, the coupled 

nature of the roll-yaw axis not only produces a roll but also some sideslip.  By feeding a 

signal proportional to , the sideslip induced by roll can be eliminated [Blakelock, 1991].  

This method has both advantages and disadvantages.  Sideslip is relatively easy to 

measure and generally more accurate than angle of attack, but it is sensitive to noise 

caused by airflow disturbances [Blakelock, 1991].  The likelihood of airflow disturbances 

require the sensitivity of the sideslip signal to be kept low so that the signal contains less 

noise.  Keeping the sensitivity low prevents damping issues that could arise from feeding 

back a sensitive beta measurement. 
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     The second method of feedback involves a  system.  This method is 

currently used on the F-15 integrated flight/fire control system and works very well 

[Blakelock, 1991].  As stated in section 2.2.4,  can be measured from a wind vane or 

probe, while  cannot.  Differentiating  to obtain  is usually not a good idea due to the 

noise amplification brought about by differentiation.  Therefore, the only way to obtain  

is to calculate it using the following relationship [Blakelock, 1991] 

 

where g is the acceleration due to gravity and  is the lateral acceleration.  When 

attempting to design a standby controller that is capable of functioning following an air 

data system failure,  is an unknown measurement which creates a problem with this 

method of feedback. 

 The third method of feedback uses a combination of the stability axis yaw rate 

, a sideslip gain constant , , and the term  [Honeywell, 

1996].  When combined together, the feedback variable becomes a measure of yaw rate 

in the form 

 

where the term  provides zero-sideslip during turns.  The term 

 also aids in sideslip prevention as well, by feeding back the sideslip angle, .  

Typically,  can be defined as   where  is the dynamic pressure 

ratio that correlates with sideslip and its transition from high adverse values at low speeds 
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to low proverse values at high speeds [Kisslinger and Wendl, 1971].  As mentioned 

previously, this method of feedback also involves true airspeed and becomes a problem 

when designing for an air data system failure.  

 The fourth and final method of feedback looked at is feeding back lateral 

acceleration.  When in a coordinated turn, the resulting acceleration lies in a plane of 

symmetry and there is no lateral acceleration [Blakelock, 1991].  Thus, if a lateral 

accelerometer is used, and that signal is fed back through the control system to remove 

the lateral acceleration with rudder input, then a coordinated turn can be obtained.  

However, even though lateral accelerations are available when a Pitot static system fails, 

the ratio of acceleration to  is only 0.034 g/deg [Blakelock, 1991].  Because of this, the 

lateral accelerometer is not as effective. 

After comparing all four methods of feedback, a  feedback system was chosen to 

provide the link between the lateral and directional axis.  So now, both the roll and the 

yaw axis depend on measurements,  and .  Since  and  measurements are typically 

found in an air data system,  and  must either be estimated or assumed still available 

following an air data system failure.   Once again this highlights the fact that alpha and 

beta measurements will be used under the assumption that there is a method of accurately 

measuring or estimating their values. 

Proceeding with the design of the yaw axis DO controller, a process similar to 

that described in section 2.3 will be used.  A model of the controller is shown in figure 41 

with  as the command variable (NCV) 
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Figure 41.  Yaw Axis Disturbance Observer Controller 

where  is defined as the desired rudder command sent to the rudder actuator to 

produce the desired yaw angle.  When considering the desired rudder dynamics, , a 

one-degree-of-freedom dutch roll mode approximation was used.  This approximation 

has errors since rudder displacement does cause some roll, but the major displacement is 

in the yaw axis [Blakelock, 1991].  Beginning with the three uncoupled, linearized lateral 

equations of motion and making several simplifying assumptions, Blakelock arrives at 

the one-degree-of-freedom dutch roll approximation given below: 

 

where  is the change in yawing moment due to rudder, b is the aircraft span, S is the 

aircraft wing area,  is the moment of inertia about the z axis,  is the damping 

derivative associated with yaw, and  is the change in yawing moment due to sideslip. 

Since the dutch roll approximation transfer function is second order, it makes sense to 
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have the yaw desired dynamics, , represented by a second order transfer function 

as well.   

 

 Once again, referring back to MIL-STD-1797B, the recommended minimum 

natural frequency, , and the minimum damping ratio, , associated with the dutch roll 

motion is 1.0 radians per second and 0.4 respectively.  Based on data presented in MIL-

STD-1797B, an  should produce Level 1 flying qualities.  As far as  is 

concerned, pilots have found significant improvements in air-to-air and air-to-ground 

tracking with higher damping ratios [MIL-STD-1797B, 2006].  Therefore, a  

was selected.  Below is a plot of the desired yaw dynamics that will be compared with the 

open and closed loop dynamics. 

 

Figure 42.  Desired Yaw Dynamics 
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 However, before accomplishing this, a model similar to that created in the pitch 

axis DO, was created to represent the directional motion of an aircraft.  Using equation 

91 as a starting point, the one-degree-of-freedom dutch roll dynamics formed the basis 

for model development.  Designing the model to encompass the design flight envelope 

 feet and  required a simple adjustment by making  a 

function of altitude and mach number.  As a result, equation 91 becomes  

 

with everything else constant or nearly constant.  Coupling actuator dynamics, ,  with 

G(h,M) yielded a simplified model of the directional aircraft motion. 

 

Once again, as was the case in the longitudinal dynamics model, there are obvious 

modeling errors. 

Attempting to account for these modeling errors, the directional aircraft model 

was combined with a multiplicative uncertainty, , to account for some of the 

existing uncertainties in the aircraft model. 

 

Using the same multiplicative uncertainty presented in the pitch DO controller design 

accounts for 20% modeling errors at low frequencies and 200% modeling errors at high 

frequency.  Finally, including the same performance weights, , and command weights, 

, used earlier enabled the simplified directional aircraft model to account for 
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modeling uncertainties, penalize performance error, and place the control inputs in the 

desired frequency range.  The finalized architecture of the directional aircraft model is 

shown in figure 43. 

 

Figure 43.  Yaw Axis Disturbance Observer Model and Controller 

 Finally, using the methods of  parameter space control design, the filter Q was 

designed to provide Robust Stability and Nominal Performance.  Specifying  as a 

second order transfer function of the form  

 

ensures causality, when calculating the design variables  and .  Using the 

mapping conditions described in section 2.3.2, guaranteed Hurwitz Stability, Robust 

Stability and Nominal Performance.   

Recall that Hurwitz Stability simply implies the poles of the characteristic 

equation are in the left hand plane.  An analysis of this provided the initial design space 

for  and  by plotting the values of  and   that caused the poles 
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of the characteristic equation to lie on the imaginary axis.  Below is a plot of the Hurwitz 

Stability design space based on the four corners of the flight envelope. 

 

Figure 44.  Hurwitz Stability at Four Corners of Flight Envelope 

An X marks the design space where closed loop poles associated with the four corners of 

the flight envelope are in the left hand plane.  

 Values of  and  were determined to guarantee Robust stability and 

Nominal Performance.  By selecting values from within the design space provided by 

Hurwitz Stability and plotting the criteria associated with Robust Stability and Nominal 

Performance,  
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an iterative process was used until both mapping conditions were met.  Figure 45 shows a 

plot of Robust Stability meeting the  constraint and Figure 46 shows a plot of 

Nominal Performance also meeting the  constraint.  

 

Figure 45.  Robust Stability Plot 
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Figure 46.  Nominal Performance Plot 

As a result of this iterative process, values   and  guaranteed 

Robust Stability and Nominal Performance. 

   Now, with all the values of the yaw axis DO known, a comparison was made at 

the four corners of the flight envelope between the open loop yaw dynamics and the 

closed loop DO controlled yaw dynamics.  A unit step input was commanded to the 

rudder command input of a Stevens and Lewis non-linear F-16 model.  The open loop 

results are shown in Figure 47. 
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Figure 47.  Open Loop Rudder Step Response 

Again, as expected, the open loop dynamics were lightly damped and varied in response 

over the entire design flight envelope.  Next, integrating the yaw DO controller with the 

nonlinear model produced the response illustrated in Figure 48. 
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Figure 48.  Disturbance Observer Rudder Step Response 

Improvements were rather significant as large, lightly damped oscillations are now 

smaller with improved damping.  Secondly, the oscillations following the roll off of the 

step input were not perfect but much improved.  

3.6 Summary 

The three alternative methods to standby-gain-scheduling were developed in this 

chapter.  Preliminary computer desktop simulation validated design theories of the DO 
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Infinity Cube simulator testing of all three systems and the validation of the VEST 2 

estimator with flight data are presented in the next chapter.   
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4.0 Results and Analysis 

4.1 Chapter Overview 

 This chapter presents the results of the pilot-in-the-loop simulator testing 

conducted at the Air Force Research Laboratory/RBCD facility and the validation of the 

velocity estimator, VEST 2.  During the pilot-in-the-loop simulator testing all three 

methods of standby-gain-scheduling (VEST 2 control, inertial control, and disturbance 

observer control) were compared.  Cooper-Harper and Pilot-in-the-Loop Oscillation 

ratings as well as pilot comments and pilot performance were recorded to compare all 

three methods of standby-gain-scheduling.  Section 4.3 discusses the validation of the 

velocity estimator algorithm, VEST 2.  The validation was accomplished by post-

processing simulator data from the block 40 F-16C simulator and actual flight data from a 

block 30 F-16D aircraft.  The results obtained from the post-processing of the block 40 F-

16C simulator data were used to tune the Kalman filter prior to post-processing actual 

aircraft data.  Finally, the results from post-processing actual aircraft data were also used 

to determine the strengths and weaknesses of the VEST 2 algorithm during actual aircraft 

maneuvers.   

4.2 Block 40 F-16C Simulator Results 

 This section describes the results of aircraft simulation testing conducted at the 

Air Force Research Laboratory AFRL/RBCD simulator building.  A high-fidelity, six-

degree-of-freedom, block 40 F-16C model with flight control system was used as the 
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simulated aircraft.  Three controllers were integrated with this high-fidelity model:  the 

baseline F-16 control system (F-16 controller); the baseline F-16 control system gain-

scheduled by VEST 2 (VEST 2 controller); and the baseline F-16 control system gain-

scheduled using inertial velocities (inertial controller).  Unfortunately, problems arose 

with the integration of the DO controller in the block 40 F-16C simulator model and 

these issues were not resolved prior to testing.  So, as a substitute, the Stevens and Lewis 

F-16 model was used in the Infinity Cube for this controller.   

 There were a few issues with the Stevens and Lewis model that arose during 

testing and must be kept in mind when analyzing the results.  First, the Stevens and Lewis 

model did not have an alpha or g-limiter so one was added but it was not as good as the 

limiter in the high-fidelity model.  Second, during the testing it was apparent that the 

throttles were scaled differently between the two models.  Thirdly, there were no leading 

edge flaps in the Stevens and Lewis model which definitely affected performance at 

higher angles of attack.  Finally, at higher angles of attack, the Stevens and Lewis model 

had a tendency to depart controlled flight and may have been a result of the marginal 

AOA limiter.  

 The models and controllers were installed on the Infinity Cube Simulator.  This 

simulator had a 210 degree field of view created by four projection screens that were 

focused at infinity.  The cockpit contained a heads up display, heads down display, 

throttle, and fly by wire side stick controller.  Data collected from this test included 

desired and adequate performance metrics for landing and tracking tasks, Cooper-Harper 

(CH) ratings, Pilot-in-the-Loop Oscillation (PIO) ratings, and variables from the aircraft 
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equations of motion.  All this information and pilot comments associated with each task 

were used to compare the performance of each standby-gain-scheduling controller.   

 There were two different types of tasks flown in the simulator.  The first was a 

landing task that required the pilot to land a block 40 F-16C on a desired touchdown 

point with a desired AOA.  The second task was an air-to-air tracking task where pilots 

attempted to follow a target aircraft around and maintain a desired position. The test 

matrix for the primary testing consisted of six landing and six tracking tasks. 

 Preparation for the primary testing took place over a period of three days where 

retired pilots of varying airframes with a wide range of experience were brought in to be 

part of a pilot study.  This study served two purposes:  to point out any issues with 

aircraft controllers, testing methods, performance criteria and task timing; the second 

purpose attempted to determine the required number of practice runs for each task prior 

to starting the primary testing.  Throughout this process implementation issues were 

identified and the testing procedure was refined.   

A result of the pilot study indicated the need for three practice landings and two 

practice tracking tasks prior to commencing the actual testing.  The order of testing was 

varied so that half of the time landings were tested first and the other half of the time 

tracking tasks were tested first.  The practice tasks were flown immediately before the 

type of task to help eliminate biased results based on unfamiliarity with the task.  Finally, 

the disturbance observer (DO) controller was tested outside of its design envelope (0.4 to 

0.8 Mach and 5,000 to 25,000 feet) for landing tasks.  On average, typical approach and 

lading speeds are between 0.25 and 0.35 Mach in the altitude band of 1,000 to 2,000 ft.  

Being well outside of its design flight envelope, the performance of the DO controller 
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was marginal at best.  Therefore, the decision was made to remove the DO standby 

controller from the lading task.         

 The primary testing took place over a period of three days and included 18 pilots 

with experience in a wide number of airframes.  There were 10 fighter pilots, 6 

tanker/airlift pilots, 1 bomber pilot, and 1 helicopter pilot. Experience levels were 

typically high with 1 pilot having completed Fighter Weapons School training.  There 

were no Test Pilots and all pilots had little experience with applying Cooper-Harper and 

PIO ratings. 

 There were four controllers used for the tracking task:  the nominal block 40 F-

16C (F-16 controller); the block 40 F-16C with estimated dynamic pressure for gain-

scheduling (VEST 2 controller); the block 40 F-16C with inertial dynamic pressure for 

gain-scheduling (inertial controller); and the DO controller (Stevens and Lewis F-16 

model).  As mentioned earlier, the landing task did not include the DO controller but 

included the other three controllers.  Controllers for both the landing and tracking tasks 

were flown in a random order.  For the landing task, each of the controllers used were 

flown twice.  In the tracking task, each controller was flown at least once.  In between 

each run, pilots were asked to give Cooper-Harper ratings and PIO ratings that described 

the controller just flown.  They were also asked to provide any comments associated with 

their ratings.     

 4.2.1 Tracking Task. 

 Starting conditions for each tracking task consisted of two low altitude (M = 0.8, 

h =5,000 ft) initial conditions, two medium altitude (M = 0.8, h = 15,000 ft) initial 
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conditions and two high altitude (M = 0.8, h = 25,000 ft) initial conditions.  During the 

tracking task, target maneuvers were flown at a constant throttle setting, causing airspeed 

to vary anywhere from M = 0.35 to M = 0.85.  There were a total of six different flight 

profiles flown with each profile containing a 2 g level turn, a 4 g level turn, a 6 g level 

turn, a barrel roll, a pitchback and a sliceback.  Each profile was flown in a slightly 

different order to prevent test subjects from predicting target maneuvers.  The 

combination of both the maneuvers flown and the initial conditions allowed the tracking 

task to cover the entire flight design envelope of the DO controller. 

 The objective of the tracking task was to chase the target through the different 

maneuvers and stay within a specified cone behind the target.  The desired cone was 

within 30 degrees of the target‟s tail and between 2,000 and 3,000 feet.  The adequate 

cone was within 45 degrees of the targets tail and between 1,500 and 3,500 feet.  Figure 

49 is an example of the tracking task cone. 

 

Figure 49.  Tracking Task Cone 

The heads-up display (HUD) was the primary means for pilots to determine where they 

were in relation to the desired and adequate cones.  In the HUD, the pilot had both a 

digital readout and visual indication of range and a visual indication of their position 
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relative to the desired and adequate cone.  Figure 50 is a snapshot of the HUD with the 

important information highlighted. 

 

 

Figure 50.  Tracking Task Heads-Up Display 

 All four controllers were flown a total of 27 times; nine times in each altitude 

block (low, medium, and high).  For each run, the total time that the aircraft was in the 

desired and adequate cones was recorded to determine a measure of performance. The 

combined results of the tracking task performance are shown in Table 8.  
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Table 8.  Tracking Task Performance 

Tracking Performance Standard 

F-16 

F-16 with 

VEST 2 

Gain-

Scheduling 

F-16 with 

Inertial 

Gain-

Scheduling 

F-16 with 

DO* 

Desired Criteria Met  43% 48% 45% 37% 

Adequate Criteria Met  78% 84% 81% 69% 

       *Stevens and Lewis Model 

Similar performance was observed between the standard F-16 controller, the VEST 2 

gain-scheduled controller, and the inertial gain-scheduled controller.  There was a 

noticeable decrease in the level of performance obtained with The DO controller.   

Cooper-Harper ratings were assigned using Bailey‟s assessment process explained in 

section 2.5.  The CH ratings shown in Figure 51 generally align with the results obtained 

from the desired and adequate performance criteria.     

 

Figure 51.  Tracking Task Cooper-Harper Ratings 
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Two CH ratings of 4 and two CH ratings of 6 for VEST 2 occurred on the first day of 

testing and were likely caused by an error in integration of the VEST 2 algorithm with the 

standard F-16 control laws.  This issue may have shifted some of the CH ratings for 

VEST 2 to the right.  This was corrected for the remainder of the testing.  

  In general, the Standard F-16, VEST 2, and the INS controllers had similar pilot 

comments that did not highlight any deficiencies.  However, there was one pilot comment 

associated with the INS controller that was repeated several times and it was associated 

with control at high altitudes and slow airspeeds.  The comments described a heavy stick 

and sluggish aircraft response associated with the high altitude flight.  This might be 

explained by the combination of a strong wind at high altitudes and the aircraft traveling 

in the same direction as the wind.  In this case, inertial velocities will causes the gain to 

be reduced because the aircraft thinks it is traveling faster through the air than it actually 

is.  For the DO controller, pilot comments generally described a sensitive stick and 

annoying roll oscillations.  These undesirable motions may have caused the overall 

decrease in performance.  However, as stated earlier, the other major factor that cannot be 

ignored is the fact that the DO controller was implemented on the Stevens and Lewis 

F-16 model and not on the high-fidelity, six-degree-of-freedom, block 40 F-16C 

simulator model.   

 The PIO ratings illustrated in Figure 52 show that there were very little 

undesirable motions observed in three of the four controllers.  The DO controller was the 

only controller that had undesirable motions.  These undesirable motions were easily 

induced with some bounded roll PIOs that are likely associated with the sensitive stick.   
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Figure 52.  Tracking Task Pilot-in-the-Loop Oscillation Ratings 

The PIO rating of 6 for the DO controller was given as a result of the aircraft departing 

controlled flight in an extremely nose high, slow speed flight attitude.  The departure was 

attributed to the lower fidelity Stevens and Lewis model and not to the DO controller.  

Typically, a CH rating of 10 is associated with a departure from controlled flight but in 

this case, the pilot elected to give a CH rating of 6. 

 Results from the tracking task indicate that there is almost no difference between 

the Standard F-16, VEST 2, and the INS controllers when tracking a target up and away 

from the ground.  This indicates that a VEST 2 gain-scheduled controller, and an inertial 

gain-scheduled controller would provide sufficient control to act as an alternative to 

standby-gain-scheduling at altitude.  The DO controller was less effective at the tracking 

task but did show potential for further refinement and development; particularly 

improvements could be made in the roll axis.  
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 4.2.2 Landing Task. 

 The six landing tasks were designed to force the test subjects to aim for and touch 

down at a specific point on the runway while simultaneously controlling aircraft speed 

and angle of attack (AOA).  The desired touchdown point was marked by blocks that 

stuck up out of the runway and are shown in Figure 53.   

 

Figure 53.  Desired Touchdown Point (Landing Task) 

Initial approaches began at six nautical miles from the threshold, 1000 feet above the 

ground.  There were two parallel landing runways allowing for the combination of both 

straight-in and side-step approaches.  With the parallel runways, there were four different 

landing profiles that the pilots could fly: 

1. Start on the left runway and land on the left runway. 
2. Start on the left runway and land on the right runway. 
3. Start on the right runway and land on the left runway. 
4. Start on the right runway and land on the right runway. 
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Pilots were told 1.3 nautical miles from the desired touchdown point whether they were 

to sidestep to the other runway or land on the runway they were already lined up on.  The 

sidestep was a deliberate attempt to drive the pilots gain up and also provide some lateral 

and directional maneuvering for evaluation.   

 The HUD was the primary means for pilots to determine their AOA at 

touchdown.  In the HUD, the pilot had both a digital readout and visual indication of the 

AOA.  Figure 54 is a snapshot of the HUD with the important information highlighted. 

 

 

Figure 54.  Landing Task Heads-Up Display 
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 The objective of the landing task was to obtain desired performance by touching 

down within the blocks (750 ± 250 feet down the runway) and at 13±1 degrees of AOA.  

Adequate performance was obtained by touching down 750 ± 500 feet down the runway 

and at 13±2 degrees of AOA.  If the desired touchdown point was obtained but it 

occurred with 15 degrees AOA then the overall performance for that landing was 

adequate. 

   Thirty-five landings were accomplished with each of the three controllers 

(standard F-16 controller, VEST 2 gain-scheduling controller, and inertial gain-

scheduling controller).  Recall that the DO controller was removed from this task since 

the task was well outside of the designed flight envelope.  Table 9 below shows the 

performance results of the landing tasks. 

Table 9.  Landing Task Performance 

Landing Performance Standard 

F-16 

F-16 with 

VEST 2 

Gain-

Scheduling 

F-16 with 

Inertial 

Gain-

Scheduling 

Desired Criteria Met  18% 14% 4% 

Adequate Criteria Met  32% 27% 32% 

 

Similar desired performance was observed between the standard F-16 controller and the 

VEST 2 gain-scheduled controller.  There was a noticeable decrease in the desired 

performance using the inertial gain-scheduled controller.  This was largely attributed to 

the faster TAS that the pilots were flying on final and was caused by a head wind.  In the 
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INS version, aircraft were actually traveling faster through the air than pilots thought 

when looking at airspeed in HUD (which was actually ground speed).  As a result it was 

more difficult to land in the desired zone with the desired AOA.  There were no trends 

relating to the sidestep maneuver nor were there any associated comments with 

maneuvers in the lateral or directional axis.  The Cooper-Harper ratings associated with 

each controller are shown in Figure 55.   

 

 

Figure 55.  Landing Task Cooper-Harper Ratings 

The only noticeable discrepancy is the large increase in CH ratings of 2 for the inertial 

gain-scheduled controller.  By definition, a CH rating of 2 is associated with a desired 

performance and minimal pilot workload.  However, as stated above, the inertial gain-

scheduled controller had a much lower desired performance rating than the other two 

controllers.  The reason for this spike in CH ratings of 2 is most likely due to two things.  

First, it was left up to the pilot to determine what level of performance was achieved on 
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each landing which introduces error into the CH rating system.  Second, the faster TAS 

that the pilots were flying on final caused by a head wind made the aircraft feel slightly 

more responsive and the pilots liked this feel.  Therefore, they were inclined to give a 

higher CH rating not because they obtained desired performance but because the aircraft 

felt more responsive flying at a slightly faster true airspeed.  The PIO ratings for the 

landing tasks are shown in Figure 56. 

 

Figure 56.  Landing Task Pilot-in-the-Loop Oscillation Ratings 

The PIO ratings reviled that for the large majority of pilots, there were very little 

undesirable motions during the lading phase.  However there were some bounded pilot-

in-the-loop oscillations that did occur showing that each of the controllers are PIO prone.  

The PIO rating of 6 for the VEST 2 controller occurred on the first day of testing when 

there was an error in the integration of VEST 2 algorithm with the standard F-16 control 
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laws.  This, coupled with pilot experience (helicopter pilot) is most likely why the VEST 

2 controller received a PIO rating of 6.  

 Results from the landing task indicate that there is little difference between the 

Standard F-16 and the VEST 2 controller when landing.  The desired performance of the 

inertial gain-scheduled controller most likely decreased as a result of the higher true 

airspeeds caused by the winds.  In this test, where the maximum headwind was 

approximately 10 knots, the overall performance remained comparable to the other two 

controllers.  The danger exists in this type of controller when there is a strong tailwind.  If 

an aircraft with an inertial gain-scheduler is forced to land in a strong tailwind, it may 

stall before it touches down due to its slower true airspeed.  This worst case scenario was 

not tested and needs further attention.  Overall, based on the results obtained from the 

landing task, a VEST 2 gain-scheduled controller would provide sufficient control to act 

as an alternative to standby-gain-scheduling in the landing phase of flight.   

4.3 Validation of Wind Estimator (VEST 2)  

 To validate the VEST 2 wind estimator, the data obtained from the desktop 

simulation were compared with the data obtained from both the F-16 simulator testing 

and actual aircraft flight data.  For this comparison, the F-16 simulator data and the actual 

flight data were post-processed using the VEST 2 algorithm.  Using the data from the F-

16 simulator, the VEST 2 Kalman filter was tuned to obtain the best results.  Then these 

results were compared to the results obtained from post-processing actual aircraft data.   

Finally, the results from the post-processing of the actual aircraft data were also used to 
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determine the strengths and weaknesses of the VEST 2 algorithm during actual aircraft 

maneuvers.   

 4.3.1 Post Processed Simulator Data. 

For implementation with the block 40 F-16C control laws, the estimated TAS 

components from VEST 2 were used to calculate a compressible dynamic pressure.  

Compressible dynamic pressure is simply a calculation of dynamic pressure using 

calibrated airspeed (defined in section 2.2.2).  This estimated compressible dynamic 

pressure was then used to drive the block 40 F-16 gain-schedule during both the tracking 

and the landing tasks.   

 The same wind profile described in section 3.3.4 was used in the simulation 

during the tracking task.  The target maneuvers in the tracking task were all flown with 

the same wind profile in order to prevent the changes to the initial conditions associated 

with the simulator.  Each run lasted between 2.5 and 3.5 minutes and started from the 

three different altitudes mentioned above.  The processes for compiling all the runs were 

the same as used during the desktop simulation.  An ensemble average was taken over the 

27 runs using the shortest run time as the stopping point for all tracking runs.  The results 

are listed in table 10 below and plots of each estimator are shown in Appendix A. 

 

 

 



 

119 

Table 10.  Wind Estimator Tracking Task (Measured Alpha & Beta) 

Measured Alpha and Beta VEST VEST TAS VEST 2 

Wind Speed Error Temporal Average 

(ft/sec) 
-8.234 -20.27 -14.25 

Wind Speed Error Standard Deviation 

(ft/sec) 
±3.19 ±7.591 ±5.256 

Wind Heading Error Temporal Average 

(deg) 
-0.05425 -0.3006 0.1232 

Wind Heading Error Standard Deviation 

(deg) 
±6.879 ±6.844 ±6.861 

 

Due to the length of each run being less than three minutes, there were some larger 

variations than those obtained through the 10 minute desktop simulations.  Secondly, 

since the variability of the wind heading was set to ±10 degrees, the rate of change over 

the shorter period proved challenging for the wind estimators.  Finally, one profile caused 

a rather large change in the estimated wind speed brought about by a large vertical 

maneuver.  The correction to this maneuver and to the variability in wind heading 

conditions was slower than desired and suggested that each Kalman filter may need some 

additional tuning.      

 By post-processing the data obtained from each run, a study was done in order to 

improve the performance of the Kalman filter.  The tuning involved changing the error 

covariance matrix, P, and the wind estimate uncertainty, Q.  The final results of this 

tuning are displayed in Table 11 with plots displayed in appendix B.  
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Table 11. Wind Estimator Tracking Task with Tuning (Measured Alpha & Beta) 

Measured Alpha and Beta with Tuning VEST VEST TAS VEST 2 

Wind Speed Error Temporal Average 

(ft/sec) 
-3.559 -5.144 -4.352 

Wind Speed Error Standard Deviation 

(ft/sec) 
±1.775 ±3.313 ±2.368 

Wind Heading Error Temporal Average 

(deg) 
-0.4418 0.8155 -0.0774 

Wind Heading Error Standard Deviation 

(deg) 
±3.029 ±3.878 ±3.641 

 

This tuning greatly improved the estimation by providing a more responsive filter.  

Knowing that a weakness associated with any form of the VEST Kalman filters is its 

requirement to have heading changes, a profile consisting of six minutes worth of 

maneuvering time, followed by a straight and level flight profile (long shot) lasting 10 

minutes was tested.  This was flown with the tuning included and the results are 

presented in the table below and in Appendix C. 

Table 12. Wind Estimator Long Shot with Tuning (Measured Alpha & Beta) 

Measured Alpha and Beta with Tuning VEST VEST TAS VEST 2 

Wind Speed Error Temporal Average 

(ft/sec) 
-2.342 4.153 -0.9055 

Wind Speed Error Standard Deviation 

(ft/sec) 
±6.587 ±6.945 ±2.412 

Wind Heading Error Temporal Average 

(deg) 
-2.051 5.229 1.589 

Wind Heading Error Standard Deviation 

(deg) 
±5.558 ±8.74 ±4.32 
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By testing the filters in their weakest condition (straight and level flight), the results show 

that the tuning did not alter their performance.  This eliminates the concern that the 

tuning adjustments may cause a filter to become divergent. 

 The final check for the tracking task was to see if the alpha and beta estimator 

would work any better on this set of data.  Recalling that the best results were obtained 

using alpha estimate and setting beta equal to zero, an ensemble average was calculated 

by post-processing the data with the newly tuned values.  The results in Table 13 were 

better than expected.  

Table 13. Wind Estimator Tracking Task with Tuning (Est. Alpha, Beta=0) 

Estimated Alpha (Beta=0) with Tuning VEST VEST TAS VEST 2 

Wind Speed Error Temporal Average 

(ft/sec) 
12.46 10.66 11.56 

Wind Speed Error Standard Deviation 

(ft/sec) 
±5.63 ±6.955 ±6.194 

Wind Heading Error Temporal Average 

(deg) 
-0.192 -0.2641 4.708 

Wind Heading Error Standard Deviation 

(deg) 
±11.62 ±13.17 ±11.05 

 

These results hint that a more accurate method of estimating alpha and beta could fulfill 

the requirement of completely removing the Pitot static system from VEST, VEST TAS, 

and VEST 2.  

 The landing task was flown as described is section 4.2.2 only using three 

controllers (recall the DO controller was eliminated from the landing task).  Therefore, 

each pilot flew each controller twice.  Once again, the ensemble average was computed 
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over 35 runs using the shortest run as the stopping point.  Table 14 displays the results 

and plots of each estimator are located in Appendix D. 

Table 14. Wind Estimator Landing Task (Measured Alpha & Beta) 

Measured Alpha and Beta VEST VEST TAS VEST 2 

Wind Speed Error Temporal Average 

(ft/sec) 
1.658 --0.9731 0.3422 

Wind Speed Error Standard Deviation 

(ft/sec) 
±1.165 ±0.9102 ±0.1441 

Wind Heading Error Temporal Average 

(deg) 
-0.007153 0.6174 0.3123 

Wind Heading Error Standard Deviation 

(deg) 
±0.01136 ±0.3016 ±0.1479 

 

Once again, the results were also post processed with the already established tuning to 

see what affect it had on the landings.  Table 15 shows the landing tasks with tuning and 

the plots can be found in Appendix E. 

Table 15. Wind Estimator Landing Task with Tuning (Measured Alpha and Beta) 

Measured Alpha and Beta with Tuning VEST VEST TAS VEST 2 

Wind Speed Error Temporal Average 

(ft/sec) 
1.295 -0.9024 0.1962 

Wind Speed Error Standard Deviation 

(ft/sec) 
±0.885 ±0.6988 ±0.1165 

Wind Heading Error Temporal Average 

(deg) 
0.001077 0.05273 0.02582 

Wind Heading Error Standard Deviation 

(deg) 
±0.05949 ±0.1743 ±0.09209 

 

Comparing both the landing tasks, it is evident that the tuning improved the estimator‟s 

performance as well.   
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 Results from both the tracking tasks and landing tasks indicate that the wind 

estimator is more than capable of producing a reliable wind estimate which in turn leads 

to a reliable true airspeed needed for gain-scheduling.  Using the tracking task as a 

measure of performance, VEST 2‟s average wind speed error was -2.6 ± 1.4 knots with a 

heading error of 0.1 ± 3.6 degrees.  Realizing that accurate measurements of alpha and 

beta will likely not be available following an air data system failure, VEST 2 also 

achieved good results with an estimated alpha and a beta equal to zero.  In this case the 

average wind speed error was 6.8 ± 3.7 knots with a heading error of 4.7 ± 11.1 degrees.  

Therefore, the estimated wind speed from the VEST 2 algorithm makes a viable 

substitute for determining true airspeed used in traditional gain-scheduling.       

 4.3.2 Post Processed Flight Data. 

 Finally, VEST 2 was selected for further analysis using actual aircraft data from a 

block 30 F-16D.  The flight data was post processed using the airspeed estimator 

algorithm.  The benefit of post-processing actual aircraft data is that all the measurements 

required to make the wind estimator algorithm work contain actual measurement noise.  

One of the limitations to the simulator testing conducted above was that all the feedback 

variables were clean (i.e. there was no noise associated with each signal).  Using actual 

aircraft data recorded from a data acquisition system provides raw data that can be used 

to realistically test the wind estimators. 

 The data used for post-processing were taken from three different sorties.  To 

ensure that all the data were used, data from two of the longer sorties were broken up into 

four sets so that the total runtime for each data set was over 28 minutes.  Then, using a 
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very similar analysis process to the one previously described, an ensemble average 

(average of each data point associated with a specific time) of the five blocks of data was 

taken.  From this ensemble average, the temporal average and standard deviations were 

calculated. 

 The three sorties flown were part of the Test Pilot School Performance Phase 

curriculum.  The first sortie was an Aerodynamic Modeling data sortie that included the 

following maneuvers:  a military power climb from 10,000 feet pressure altitude (PA) to 

40,000 feet PA; dynamic maneuvers that included roller coasters, wind-up turns, and 

split-s; cruise data points (straight and level unaccelerated flight); and a maximum range 

descent (idle and 218 KCAS) from 25,000 feet to 10,000 feet.  See appendix F, Figures 

(90-93) for the comparisons of wind speed and heading estimations.  The second sortie 

was a Turn Performance data sortie that included the following maneuvers:  stabilized 

turns at various airspeeds and load factors using military power; stabilized turns at 

various airspeeds and load factors using maximum power; a maximum power level 

acceleration at 35,000 feet PA; and a penetration descent (idle, 300 KCAS and speed 

brake) from 40,000 feet PA to 10,000 feet PA.  See appendix F, Figures (94-97) for the 

comparisons of wind speed and heading estimations.  The third sortie flown was a Level 

Acceleration data sortie that included the following maneuvers:  military power and 

maximum power level accelerations; a maximum range descent (idle and 218 KCAS) 

from 40,000 feet to 10,000 feet PA; and a penetration descent (idle, 300 KCAS and speed 

brake) from 40,000 feet to 10,000 feet PA.  See appendix F, Figures (98-101) for the 

comparisons of wind speed and heading estimations. 
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 There was no balloon data available to get wind truth data for any of these sorties.  

The next best truth source for wind speed would have been an actual recording of the 

calculated winds from the block 30 F-16D air data system.  Unfortunately, the data 

acquisition systems are not setup to record F-16 wind calculations.  As a result, the data 

acquisition measurements of true airspeed (TAS), inertial navigation system (INS) speeds 

and a few other measurements were used to calculate the truth data for the winds.  Since 

the data coming from the data acquisition system is somewhat noisy, the calculated truth 

data was also noisy.  To correct this, an F-16 wind filter similar to the one in the aircraft 

was built to filter the raw data and provide a more stable measure of truth data.  An 

example of the filtered wind data is illustrated in Appendix G.      

 Figures 57 and 58 show the ensemble average wind speed and heading error from 

the VEST 2 wind estimator using measured values of alpha and beta. 

 

Figure 57.  VEST 2 Wind Speed Error with Flight Data (Meas. Alpha & Beta) 
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Figure 58. VEST 2 Wind HDG Error with Flight Data (Meas. Alpha & Beta) 

A comparison between the VEST 2 results from the desktop simulation, simulator 

tracking task, and the VEST 2 results from flight data is shown in Table 16.  

Table 16.  VEST 2 Performance Comparison (Measured Alpha and Beta) 

Measured Alpha and Beta  
VEST 2  

Flight 

Data 

VEST 2 
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Data 

VEST 2 

Desktop 

Simulation 

Wind Speed Error Temporal Average  

(ft/sec) 
-1.55 -4.352 1.742 

Wind Speed Error Standard Deviation 

(ft/sec) 
±5.88 ±2.368 ±5.462 

Wind Heading Error Temporal Average 

(deg) 
2.50 -0.0774 0.4313 

Wind Heading Error Standard 

Deviation (deg) 
±12.87 ±3.641 ±2.857 
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When subjected to noisy aircraft data, the performance of the VEST 2 wind estimator is 

on par with the results obtained in both the simulator testing and the desktop simulation.  

The largest change was associated with the standard deviations and was somewhat 

expected based on the noisy measurements coming from the aircraft.   

 Taking this analysis one step farther, figures 59 and 60 show the wind speed and 

heading error from the VEST 2 wind estimator using an estimated alpha and setting beta 

equal to zero. 

 

Figure 59. VEST 2 Wind Speed Error with Flight Data (Est. Alpha, Beta = 0) 
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Figure 60. VEST 2 Wind HDG Error with Flight Data (Est. Alpha, Beta = 0) 

Once again, a comparison between the VEST 2 results from the desktop simulation, 

simulator tracking task, and the VEST 2 results from flight data is shown in Table 17. 

Table 17.  VEST 2 Performance Comparison (Estimated Alpha, Beta = 0) 

Estimated Alpha (Beta = 0)  
VEST 2  
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VEST 2 

Simulator 

Data 

VEST 2 
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Wind Speed Error Temporal Average   

(ft/sec) 
11.15 11.56 18.15 

Wind Speed Error Standard Deviation 

(ft/sec) 
±6.41 ±6.194 ±14.2162 

Wind Heading Error Temporal Average 

(deg) 
-2.21 4.708 23.581 

Wind Heading Error Standard Deviation 

(deg) 
±11.18 ±11.05 ±48.2201 

*Desktop Simulation results were obtained prior to tuning the Kalman filter.  
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Results from the VEST 2 wind estimator using estimated alpha and setting beta equal to 

zero matched very closely with the previous results obtained in the simulator tracking 

task.  The desktop simulation results were actually worse but this is likely caused by 

these results being obtained prior to the Kalman filter tuning.  Using this estimator with 

the flight data resulted in an average wind speed error of 6.6 ± 3.8 knots with a heading 

error of -2.2 ± 11.2 degrees.  Post-processing actual aircraft data and using estimated 

values of alpha with beta equal to zero realistically demonstrated the capability of the 

VEST 2 wind estimator to estimate wind velocities following an air data system failure.  

Therefore, the estimated wind speed from the VEST 2 algorithm makes a viable 

substitute for determining true airspeed used in traditional gain-scheduling.       

 4.3.3 VEST 2 Performance During Aircraft Maneuvers. 

 The results from post-processing actual aircraft data were used to identify the 

strengths and weaknesses of the VEST 2 algorithm.  Aircraft maneuvers were isolated to 

determine how VEST 2 was affected.  Recall from section 3.3.3 that the VEST 2 

algorithm consisted of both the VEST and VEST TAS estimations.  When a breakdown 

in the VEST 2 algorithm occurred, a deeper analysis was conducted to determine if the 

cause was rooted in VEST, VEST TAS or caused by some other issue.  Plots of aircraft 

maneuvers and the velocity estimations for the Aerodynamic Modeling, Turn 

Performance, and Level Acceleration sorties can be found in Appendices H, I and J 

respectively.  It is important to note that the plots of the individual maneuvers are subsets 

of the post processed data from the entire flight.  This means that some of the wind 

estimations were not starting out with zero error at the beginning of each maneuver or set 
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of maneuvers.  At times, this made it difficult to determine if and when the estimator‟s 

performance was affected by a maneuver.  The performance of the VEST 2 estimator was 

broken down by flight since the wind conditions were different for each of the data 

flights and are discussed in the following order:  1) Aerodynamic Modeling Sortie; 2) 

Turn Performance Sortie; 3) Level Acceleration Sortie.   

4.3.3.1 Aerodynamic Modeling Sortie. 

The Aerodynamic Modeling Sortie was flown on 4 October 2008.  The magnitude 

of the winds ranged from 17 knots at the surface to 130 knots at 40,000 feet pressure 

altitude (PA).  The wind direction varied anywhere from 040 to 120 depending on aircraft 

location and altitude.  

The first maneuver flown was a bleed rate climb from 10,000 to 40,000 feet PA.  

The VEST 2 wind estimator‟s estimation of wind speed continued to increase as the 

actual winds leveled off between 35,000 and 40,000 feet.  Here, VEST 2 continued to 

predict an increase in the wind speed correlating to the increasing altitude.  This was 

caused by the VEST component of the wind estimator and can be seen when comparing 

Figures 111 and 112 of Appendix H.  Recall that the VEST portion of the VEST 2 

algorithm used a model of the linear lapse rate of winds with respect to an aircraft‟s 

change in altitude to estimate the perturbation initial conditions.  Because the altitude 

continued to increase, the estimates of wind speed were driven up by the perturbation 

initial conditions model.  However, once the aircraft leveled off and began to turn, the 

wind speed estimate quickly converged with the actual wind speed.   
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The second set of maneuvers flown was a combination of roller coasters, windup 

turns, and split-s manuevers.  The VEST 2 algorithm effectively estimated both wind 

speed and heading for the majority of the maneuvering.  There were slight deviations in 

heading during the windup turn and split-s maneuvers.  This is likely due to the logic 

placed on the residuals (explained in Section 3.3.4) that was associated with higher flight 

path angle maneuvering.  Recall that the purpose of this residual logic was to maintain 

responsiveness while simultaneously preventing large fluctuations caused by rapid onset, 

high-g maneuvers at high flight path angles.  Based on the results shown in Figures 115 

and 117 of Appendix H, the logic might have restricted the ability of the estimator to 

respond to the changing conditions in these maneuvers.  Nonetheless, as soon as these 

relatively short duration maneuvers were completed, the VEST 2 estimator quickly 

converged back to the actual wind speed and heading.   

The third type of maneuver flown was a two-step climb from 20,000 to 32,000 

feet PA.  This maneuver showed how the VEST 2 algorithm was dependent on the 

changes in aircraft heading to provide a responsive estimate.  As seen in figure 118 of 

Appendix H, the filter responded slowly to changes in wind conditions during a constant 

heading climb.  However, when the climb was broken up by a 50 degree heading change, 

the VEST 2 estimator quickly converged on the actual wind conditions.  This result 

highlighted the known limitation that the VEST 2 estimator required heading changes to 

provide the most accurate estimate.   

The fourth maneuver flown was a set of three minute cruise points broken up by a 

change in heading.  From Figures 120 and 121, the estimator provided a fairly constant 

estimate that updated only when the heading change occurs.  This once again highlighted 
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the limitation that the VEST 2 algorithm required heading change to provide the best 

estimate.   

The final maneuver flown on the Aerodynamic Modeling Sortie was a maximum 

range, constant airspeed, constant heading descent.  Figures 122 and 123 illustrate that 

the estimated heading wandered towards the end of the descent.  Breaking the VEST 2 

algorithm down into its components, VEST (Figure 124) and VEST TAS (Figure 125), it 

was evident that the VEST TAS estimator provided a much better estimate for this 

constant airspeed, constant heading descent.  Holding a constant airspeed during the 

descent took advantage of the perturbation initial conditions model in the VEST TAS 

estimator.  Recall that this model used the change in ground speed components to 

estimate the change in TAS components.  Therefore, since calibrated airspeed and aircraft 

headings were held constant during the descent, the VEST TAS algorithm was able to use 

the changes in ground speed to estimate the wind conditions more effectively.  

4.3.3.2 Turn Performance Sortie. 

The Turn Performance Sortie was flown on 3 October 2008.  The magnitude of 

the winds ranged from 30 knots at the surface to 100 knots at 40,000 feet pressure 

altitude (PA).  The wind direction varied anywhere from 040 to 140 depending on aircraft 

location and altitude.  

The first maneuver flown was a set of maximum power level turns at 20,000 feet 

PA.  Figure 126 in Appendix I shows that the VEST 2 algorithm effectively estimated 

both wind magnitude and heading for the majority of the maneuvering.  At times the 

estimations appeared to lag the actual wind conditions but when the VEST 2 algorithm 
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was broken down into its components, VEST and VEST TAS, there were no apparent 

explanations.  It is likely that the slight lag in the estimation was caused by values chosen 

for the error covariance matrix and the wind estimate uncertainty matrix associated with 

the filter tuning process.   

The second maneuver flown was a maximum power level acceleration at 35,000 

feet PA.  Figure 130 in Appendix I shows that the wind speed estimate differed slightly 

from the actual wind speed.  Once again, breaking the VEST 2 algorithm down into its 

components, VEST (Figure 132) and VEST TAS (Figure 133), it is evident that the 

VEST TAS estimator provided a slightly better estimate for this constant heading, 

changing airspeed level acceleration.  It is also interesting to point out that the aircraft 

transitions through Mach one around the 700 second mark.  During this transition, it 

appears that the raw wind measurements are influenced by the transonic region where as 

VEST 2 (including both VEST and VEST TAS) is not. 

The third maneuver flown was a constant airspeed, constant heading, penetration 

descent from 40,000 to 10,000 feet PA.  Looking at figures 134 and 135, it was apparent 

that both the estimated wind speed and heading fail to respond to the changing wind 

conditions.   Breaking the VEST 2 algorithm down into its components, VEST (Figure 

136) and VEST TAS (Figure 137) further highlights this issue.  Investigating further, 

Figures 138 and 139 show the VEST and VEST TAS estimators without the residual 

logic incorporated in the algorithm.  These results showed that the residual logic 

(designed to limit the sensitivity to high-g, rapid onset maneuvers at high flight path 

angles) actually hindered the responsiveness of the VEST TAS algorithm in stabilized 
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flight.  In fact, without the residual logic, the VEST TAS portion provided an excellent 

estimation of the actual wind conditions.   

The final set of maneuvers flown on the Turn Performance Sortie was the 

execution of the recovery and landing (Figures 139-144 in Appendix I).  Maneuvers 

flown during the recovery and landing phase of flight are usually limited to the following: 

small climbs and descents; low g maneuvering; gradual airspeed changes; configuration 

changes; and landing.  Very similar to the analysis just described, the VEST TAS with no 

residual logic provided the best estimation of the wind components in stabilized or 

gentile maneuvering flight.  This once again highlighted the fact that the residual logic 

actually hinderd the responsiveness of the VEST TAS algorithm in stabilized or gentile 

maneuvering flight.   

4.3.3.3 Level Acceleration Sortie. 

The Level Acceleration Sortie was flown on 29 September 2008.  The magnitude 

of the winds ranged from 5 knots at the surface to 50 knots at 40,000 feet pressure 

altitude (PA).  The wind direction varied anywhere from 260 thru north to 160 depending 

on aircraft location and altitude.  

The first maneuvers flown were military power level accelerations at 15,000; 

25,000; and 35,000 feet PA.  Figures 146 and 147 in Appendix J demonstrated the ability 

of the VEST 2 algorithm to accurately estimate the wind magnitude and direction.  The 

level acceleration at 35,000 feet PA was difficult to assess since the wind estimations 

were not starting out with zero error at the beginning of the maneuver.  However, based 
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on a comparison of Figures 150-153, the VEST TAS portion of the algorithm appears to 

provide the most accurate estimate for this maneuver.   

The second maneuver was a constant heading, constant speed, maximum range 

descent.  Figures 154-157 in Appendix J show that the VEST 2 estimator was slow to 

respond to the changing wind heading conditions.  Recall that the same maneuver was 

flown in the Aerodynamic Modeling Sortie where the results showed that the VEST TAS 

estimator provided the best estimate for this constant airspeed, constant heading descent.  

However, during this maneuver, there was no apparent difference between the VEST 

TAS estimate and the VEST estimate.   

The third series of maneuvers flown were the maximum power level accelerations 

at 10, 20, 30 and 40 thousand feet PA.  Once again these maneuvers highlighted the 

limitation that the VEST 2 algorithm requires heading change to provide the best 

estimate.  In this case, there was one heading change of approximately 200 degrees in-

between the second and third Level Acceleration.  The change in heading enabled the 

estimator to provide an accurate update but as soon as the heading was stabilized, the 

VEST 2 estimator once again failed to respond to the changing wind conditions.  Figures 

158-163 look at all the possible combinations of the VEST 2 estimator and reemphasize 

the fact that the VEST 2 algorithm requires heading change to provide the most accurate 

estimate. 

The final maneuver flown on the Level Acceleration Sortie was a penetration 

descent similar to the one flown on the Turn Performance Sortie.  During this maneuver 

there were two turns that occurred during the descent that allowed the estimator to 

provide relatively accurate estimates of the wind components.  Figures 164 and 165 in 
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Appendix J illustrate these results.  Additionally, looking at the VEST estimator results in 

Figure 166, it is clear that the linear lapse rate of winds with respect to an aircraft‟s 

change in altitude has a significant impact on the VEST algorithm‟s ability to correctly 

estimate wind speed.  In this case, these results lead to a larger error simply because the 

magnitude of the winds only changed 45 knots over 30,000 feet of altitude change.  

4.4 Summary 

This chapter presented the results from the F-16 simulator testing and post-

processing of aircraft flight data.  It also validated the VEST 2 wind estimator and 

highlighted some of its strengths and weaknesses.  The simulator testing involved the 

comparison of three alternatives to standby-gain-scheduling during landing and tracking 

tasks.  Results from the tracking task indicated that there was almost no difference 

between the Standard F-16, VEST 2, and the INS controllers when tracking a target up 

and away from the ground.  This indicated that a VEST 2 gain-scheduled controller and 

an inertial gain-scheduled controller would provide sufficient control to act as an 

alternative to standby-gain-scheduling at altitude.  The DO controller was less effective at 

the tracking task but did show potential for further refinement and development.  The 

results obtained from the landing task showed that a VEST 2 gain-scheduled controller 

would provide sufficient control to act as an alternative to standby-gain-scheduling in the 

landing phase of flight.  Results from both the tracking tasks and landing tasks indicate 

that the wind estimator (VEST 2) is capable of producing a reliable wind estimate which 

in turn leads to a reliable true airspeed needed for gain-scheduling.   
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Preliminary results from the desktop simulation of VEST 2 in Section 3.3.4 

indicated that accurate estimates would only be possible using actual measured quantities 

of alpha and beta.  However, by post-processing data obtained from a high-fidelity, six-

degree-of-freedom, block 40 F-16C simulator, reasonable results were obtained using an 

estimated alpha and setting beta equal to zero.  Actual aircraft data recorded from a data 

acquisition system provided raw data that realistically tested and validated the simulator 

results obtained from the VEST 2 wind estimator.  Using this estimator with the flight 

data resulted in an average wind speed error of 6.6 ± 3.8 knots with a heading error of      

-2.2 ± 11.2 degrees.  These results showed that the estimated wind speed from the 

VEST 2 algorithm could make a viable substitute for determining the true airspeed used 

in traditional gain-scheduling. 

The validation of the VEST 2 wind estimator was accomplished by comparing the 

estimate obtained from the desktop simulation data, high-fidelity F-16 simulator data, and 

actual aircraft flight data with truth wind data.  The results from this comparison 

validated the VEST 2 wind estimator and showed that it is possible to produce good wind 

estimates without the use of an air data system.   

Finally, the results from the post-processing of the actual aircraft data were also 

used to determine the strengths and weaknesses of the VEST 2 algorithm during actual 

aircraft maneuvers.  The strength of the VEST 2 algorithm was its ability to provide 

accurate wind estimates during maneuvering flight.  The strength of the VEST 2 wind 

estimator was also its biggest weakness in that the estimator became somewhat 

unresponsive under the constant heading flight condition.  This was not entirely true as 

the VEST TAS portion of the VEST 2 wind estimator showed an ability to continue to 
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provide a good wind estimates despite the constant heading condition.  It was also 

determined that the residual logic, implemented with the intent to maintain 

responsiveness while simultaneously preventing large estimation errors, limited the 

ability of the estimator to respond during aggressive maneuvers.  The residual logic also 

had an unintended limitation by limiting the responsiveness of the estimator in constant 

heading flight.  Another unexpected strength of the VEST 2 estimator was its ability to 

provide accurate estimates of winds during transonic flight, something that cannot be said 

for a normal Pitot static system.  Finally, when the VEST 2 estimator was broken down 

into its components, the VEST TAS component tended to perform better than the VEST 

component during aircraft maneuvers.  The limitation of the VEST estimator was its 

model of the linear lapse rate of wind speed that caused its estimates to increase or 

decrease faster than the actual wind speed during altitude changes.    
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5.0 Discussion 

5.1 Overview 

The objective of this research was to determine if alternative methods of standby-

gain-scheduling could provide robust control despite the absence of an air data system.  

Three different methods of standby-gain-scheduling were developed and compared.  The 

first alternative method built upon an algorithm which used inertial data to estimate the 

aircraft‟s true velocity [McLaren, 2008].  This estimated true velocity was used to drive 

the gains in an F-16 controller.  The second method simply used inertial velocities to 

drive the gains in an F-16 controller.  The final method used a disturbance observer 

controller which controlled aircraft dynamics without the use of gain-scheduling.   In the 

event of an air data system failure, any of the alternative methods to standby-gain-

scheduling researched would eliminate the pilot‟s requirement to make switch actuations 

to correctly schedule the standby-gains in a large flight envelope.  Secondly, aircraft 

performance may prove to be more effective than the traditional standby-gain settings 

allowing the pilot to continue with a combat mission as opposed to selecting the standby-

gain, flying a particular airspeed and returning to base.  Possible future research areas 

include improved airspeed estimate filtering, alternative methods to estimating alpha and 

beta, continued refinement and development of the disturbance observer controller, and 

actual flight testing of each standby controller.  
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5.2 Conclusions of Research 

The purpose of each alternative to standby-gain-scheduling was to eliminate 

mandatory switch actuations by the pilot, provide aircraft performance equal to the 

baseline method of control and reduced dependency on the air data system.  This work 

compared alternative methods of standby-gain-scheduling following an air data system 

failure through desktop simulation, simulator testing, and by post-processing aircraft 

data.  The simulator testing involved the comparison of three alternatives to standby-

gain-scheduling during landing and tracking tasks.  Results from the tracking task 

indicated that there was almost no difference between the Standard F-16, VEST 2, and 

the INS controllers when tracking a target up and away from the ground.  This indicated 

that a VEST 2 gain-scheduled controller and an inertial gain-scheduled controller would 

provide sufficient control to act as an alternative to traditional gain-scheduled control at 

altitude.  The DO controller was less effective at the tracking task but did show potential 

for further refinement and development, particularly in the lateral and directional axis.  

The results obtained from the landing task showed that a VEST 2 gain-scheduled 

controller could provide sufficient control to act as an alternative to standby-gain-

scheduling in the landing phase of flight.  Results from both the tracking tasks and 

landing tasks indicate that the wind estimator (VEST 2) is capable of producing a reliable 

wind estimate which in turn leads to a reliable true airspeed needed for gain-scheduling.   

Preliminary results from the desktop simulation testing of the wind estimator, 

VEST 2, indicated that accurate estimates would only be possible using actual measured 

quantities of alpha and beta.  However, by post-processing data obtained from a high-
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fidelity, six-degree-of-freedom, block 40 F-16C simulator, reasonable results were 

obtained using an estimated alpha and setting beta equal to zero.  Actual aircraft data 

recorded from a data acquisition system provided raw data that realistically tested and 

validated the simulator results obtained from the VEST 2 wind estimator.  Using this 

estimator with the flight data resulted in an average wind speed error of 6.6 ± 3.8 knots 

with a heading error of -2.2 ± 11.2 degrees.  These results were enough to conclude that 

the estimated wind speed from the VEST 2 algorithm could make a viable substitute for 

determining the true airspeed used in traditional gain-scheduling.   

Finally, the strength of the VEST 2 algorithm during actual aircraft maneuvers 

was its ability to provide accurate wind estimates during maneuvering flight.  The 

strength of the VEST 2 wind estimator was also its biggest weakness in that the estimator 

became somewhat unresponsive under the constant heading flight conditions.  However, 

the VEST TAS portion of the VEST 2 wind estimator showed some ability to continue to 

provide a good wind estimates despite the constant heading condition.  Another 

unexpected strength of the VEST 2 estimator was its ability to provide accurate estimates 

of winds during transonic flight, something that cannot be said for a normal Pitot static 

system.  Finally, the limitation of the VEST estimator, a sub-component of VEST 2, was 

its model of the linear lapse rate of wind speed that caused its estimates to increase or 

decrease faster than the actual wind speed during altitude changes.  This affected the 

wind speed estimates of VEST 2, often increasing the estimated wind speed error. 
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5.3 Significance of Research 

Currently, the Air Force has advanced fighter aircraft that require a pilot to make 

switch actuations to correctly schedule flight control system standby-gains in the event of 

air data system failures.  This takes time away from other pertinent tasks to manually 

position the standby-gains via the landing gear handle, air-to-air refueling door switch or 

some other means.  Additionally, the standby-gain settings are suboptimal for an 

advanced fighter flight envelope and are primarily designed to allow for the safe recovery 

and landing of an aircraft.  Suboptimal settings can lead to decreased aircraft handling 

qualities and increased pilot work load throughout a majority of the normal flight 

envelope. 

 Each of the alternative methods to standby-gain-scheduling discussed in this 

paper could be implemented in a modern day fighter.  The wind estimator, VEST 2, and 

the inertial velocity gain-scheduler would be ready for implementation onto an aircraft 

today.  The disturbance observer would require additional research and development in 

order to make it airworthy.  However, in the event of an air data system failure, any of the 

alternative methods to standby-gain-scheduling researched would eliminate the pilot‟s 

requirement to make switch actuations to correctly schedule the standby-gains in a large 

flight envelope.  Secondly, the aircraft performance may prove to be more effective than 

the traditional standby-gain settings allowing the pilot to continue with a combat mission 

as opposed to selecting the standby-gain, flying a particular airspeed and returning to 

base.  Finally, this research may someday contribute to the removal of Pitot tubes in an 

attempt to reduce the radar cross section of an aerial vehicle.  
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5.4 Recommendations for Future Research 

Future research should focus on improving airspeed estimates, continued 

refinement and development of the disturbance observer controller, and actual flight 

testing of each standby controller.     

The average estimated wind error and standard deviation from the VEST 2 

algorithm could be improved through Kalman filter tuning and a more in depth study of 

its weaknesses.  Investigating the wind estimator‟s performance during individual aircraft 

maneuvers would highlight potential weaknesses in the estimator and likely lead to 

improved wind estimates.   

Continued refinement of the disturbance observer (DO) controller is necessary to 

prepare this method of control for flight test.  More emphasis should be placed on the 

lateral and directional axis to improve aircraft control.  Additionally, atmospheric 

disturbances and noise should be added to the disturbance observer simulation to test the 

robustness of the DO controller.  In its current state, the DO controller is still dependent 

on accurate measurements of alpha and beta.  Future research could also look at 

developing a DO controller that either uses estimates of alpha and beta or completely 

removes the DO controller‟s dependence on alpha and beta.  Additionally, a separate 

research area that would have a direct impact on this research would involve developing a 

more accurate estimate of alpha and beta derived from aircraft sensors still available 

following an air data system failure. 

Finally, all three systems need to be flight tested to validate their performance.  

The United States Air Force Test Pilot School‟s Variable Stability In-Flight Simulator 



 

144 

Test Aircraft (VISTA) would be the perfect platform for testing any of these alternative 

methods to standby-gain-scheduling.  The flight envelope on board the variable stability 

system of the VISTA is representative of a large, fighter-type flight envelope and would 

provide adequate room to conduct maneuvers that would effectively test each standby 

controller.   

 

5.5 Summary 

The research objective of this thesis was met by comparing alternative methods of 

standby-gain-scheduling following an air data system failure and validating the velocity 

estimator (VEST 2) algorithm with simulation and flight test data.  Three alternatives to 

the traditional standby-gain-scheduling were developed and compared in a block 40 

F-16C simulator.  The results of this research clearly show the potential for effective 

aircraft control with minimal performance degradation following an air data system 

failure.  The VEST 2 controller and the inertial velocity controller showed almost no 

performance degradation or increased pilot workload when compared to the nominal 

block 40 F-16C controller.  Even though the DO controller resulted in decreased aircraft 

performance and increased in pilot workload, it still managed to obtain at least adequate 

performance with a tolerable workload throughout the designed flight envelope (0.4 – 0.8 

Mach and 5,000 – 25,000 ft).  This result demonstrated the potential for using a DO 

controller for large flight envelope control without the need for gain-scheduling.   

Future research should focus on improving airspeed estimates, continued 

refinement and development of the disturbance observer controller, and actual flight 

testing of each standby controller.
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Appendix A. Tracking Task Wind Estimator Plots   

 

Figure 61. VEST Wind Speed Error (Meas. Alpha & Beta)  

 

Figure 62. VEST Wind HDG Error (Meas. Alpha & Beta) 
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Figure 63. VEST TAS Wind Speed Error (Meas. Alpha & Beta) 

 

 

Figure 64. VEST TAS Wind HDG Error (Meas. Alpha & Beta) 
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Figure 65. VEST 2 Wind Speed Error (Meas. Alpha & Beta) 

 

 

Figure 66. VEST 2 Wind HDG Error (Meas. Alpha & Beta) 
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Appendix B. Tracking Task Wind Estimator Plots with Tuning 

 

Figure 67.  VEST Wind Speed Error with Tuning (Meas. Alpha & Beta)  

 

 

Figure 68. VEST Wind HDG Error with Tuning (Meas. Alpha & Beta) 
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Figure 69. VEST TAS Wind Speed Error with Tuning (Meas. Alpha & Beta) 

 

 

Figure 70. VEST TAS Wind HDG Error with Tuning (Meas. Alpha & Beta) 
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Figure 71. VEST 2 Wind Speed Error with Tuning (Meas. Alpha & Beta) 

 

 

Figure 72. VEST 2 Wind HDG Error with Tuning (Meas. Alpha & Beta) 
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Appendix C. Longshot Task Wind Estimator Plots with Tuning 

 

Figure 73.  VEST Wind Speed Error with Tuning (Meas. Alpha & Beta) 

 

 

Figure 74. VEST Wind HDG Error with Tuning (Meas. Alpha & Beta) 
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Figure 75. VEST TAS Wind Speed Error with Tuning (Meas. Alpha & Beta) 

 

 

Figure 76. VEST TAS Wind HDG Error with Tuning (Meas. Alpha & Beta) 
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Figure 77. VEST 2 Wind Speed Error with Tuning (Meas. Alpha & Beta) 

 

 

Figure 78. VEST 2 Wind HDG Error with Tuning (Meas. Alpha & Beta) 
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Appendix D. Landing Task Wind Estimator Plots.  

 

Figure 79. VEST Wind Speed Error (Meas. Alpha & Beta) 

 

Figure 80. VEST Wind HDG Error (Meas. Alpha & Beta) 
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Figure 81. VEST TAS Wind Speed Error (Meas. Alpha & Beta) 

 

Figure 82. VEST TAS Wind HDG Error (Meas. Alpha & Beta) 
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Figure 83. VEST 2 Wind Speed Error (Meas. Alpha & Beta) 

 

Figure 84. VEST 2 Wind HDG Error (Meas. Alpha & Beta) 
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Appendix E.  Landing Task Wind Estimator Plots with Tuning 

 

Figure 85. VEST Wind Speed Error with Tuning (Meas. Alpha & Beta) 

 

 

Figure 86. VEST Wind HDG Error with Tuning (Meas. Alpha & Beta) 
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Figure 87. VEST TAS Wind Speed Error with Tuning (Meas. Alpha & Beta) 

 

 

Figure 88. VEST TAS Wind HDG Error with Tuning (Meas. Alpha & Beta) 
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Figure 89. VEST 2 Wind Speed Error with Tuning (Meas. Alpha & Beta) 

 

 

Figure 90. VEST 2 Wind HDG Error with Tuning (Meas. Alpha & Beta) 
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Appendix F. Aircraft Flight Data Post-Processing Plots 

 

Figure 91.  Aerodynamic Modeling VEST 2 Wind Speed (Meas. Alpha & Beta) 

 

 

Figure 92. Aerodynamic Modeling VEST 2 Wind HDG (Meas. Alpha & Beta) 
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Figure 93. Aerodynamic Modeling VEST 2 Wind Speed (Est. Alpha, Beta=0) 

 

  

Figure 94. Aerodynamic Modeling VEST 2 Wind HDG (Est. Alpha, Beta=0) 
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Figure 95. Turn Performance VEST 2 Wind Speed (Meas. Alpha & Beta) 

 

 

Figure 96. Turn Performance VEST 2 Wind HDG (Meas. Alpha & Beta) 
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Figure 97. Turn Performance VEST 2 Wind Speed (Est. Alpha, Beta=0) 

 

 

Figure 98. Turn Performance VEST 2 Wind HDG (Est. Alpha, Beta=0) 
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Figure 99. Level Acceleration VEST 2 Wind Speed (Meas. Alpha & Beta) 

 

 

Figure 100. Level Acceleration VEST 2 Wind HDG (Meas. Alpha & Beta) 
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Figure 101. Level Acceleration VEST 2 Wind Speed (Est. Alpha, Beta= 0) 

 

 

Figure 102. Level Acceleration VEST 2 Wind HDG (Est. Alpha, Beta=0) 
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Appendix G. Aircraft Wind Truth Data Comparison 

 

Figure 103.  Aerodynamic Modeling Wind Speed Truth Data  

 

Figure 104. Aerodynamic Modeling Wind HDG Truth Data  
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Figure 105. Turn Performance Wind Speed Truth Data  

 

Figure 106. Turn Performance Wind HDG Truth Data  
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Figure 107. Level Acceleration Wind Speed Truth Data  

 

Figure 108. Level Acceleration Wind HDG Truth Data  
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Appendix H. Aerodynamic Modeling Sortie Maneuver Plots 

Aerodynamic Modeling Sortie  
(Bleed Rate Climb) 

VEST 2

 
Figure 109.  Bleed Rate Climb (VEST 2) 
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Aerodynamic Modeling Sortie  
(Bleed Rate Climb) 

VEST 2 
F-16 Filtered Winds 

 
Figure 110.  Bleed Rate Climb (VEST 2) 
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Aerodynamic Modeling Sortie  

(Bleed Rate Climb) 
VEST 

 

 
Figure 111.  Bleed Rate Climb (VEST) 
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Aerodynamic Modeling Sortie  
(Bleed Rate Climb) 

VEST TAS 

 
Figure 112.  Bleed Rate Climb (VEST TAS) 
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Aerodynamic Modeling Sortie  
(Multiple Roller Coasters, Windup Turns, Split-S‟s) 

VEST 2 

 
Figure 113.  Roller Coasters, Windup Turns, and Split-S (VEST 2) 
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Aerodynamic Modeling Sortie  
(Multiple Roller Coasters, Windup Turns, Split-S‟s) 

VEST 2 
F-16 Filtered Winds 

 
Figure 114. Roller Coasters, Windup Turns, and Split-S (VEST 2) 

 



 

183 

Aerodynamic Modeling Sortie  
(Single Roller Coaster, Single Windup Turn, Single Split-S) 

VEST 2 

 
Figure 115. Roller Coaster, Windup Turn, and Split-S (VEST 2) 
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Aerodynamic Modeling Sortie  
(Single Roller Coaster, Single Windup Turn, Single Split-S) 

VEST 2 
F-16 Filtered Winds 

 
Figure 116.  Roller Coaster, Windup Turn, and Split-S (VEST 2) 
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Aerodynamic Modeling Sortie  
(Single Roller Coaster, Single Windup Turn, Single Split-S) 

VEST 2 (No Residual Logic) 
 

 
Figure 117.  Roller Coaster, Windup Turn, Split-S (VEST 2 - No Residual Logic) 
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Aerodynamic Modeling Sortie 
(Climb) 
VEST 2 

 
Figure 118.  Climb (VEST 2) 
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Aerodynamic Modeling Sortie  
(Climb) 
VEST 2 
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Figure 119.  Climb (VEST 2) 
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Aerodynamic Modeling Sortie  

(Cruise Points) 
VEST 2 

 
Figure 120.  Cruise Points (VEST 2) 
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Aerodynamic Modeling Sortie  
(Cruise Points) 
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Figure 121.  Cruise Points (VEST 2) 
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Aerodynamic Modeling Sortie  
(Maximum Range Descent) 

VEST 2 

 
Figure 122.  Maximum Range Descent (VEST 2) 
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Aerodynamic Modeling Sortie  
(Maximum Range Descent) 
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Figure 123.  Maximum Range Descent (VEST 2) 
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Aerodynamic Modeling Sortie  
(Maximum Range Descent) 

VEST 

 
Figure 124.  Maximum Range Descent (VEST) 
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Aerodynamic Modeling Sortie  
(Maximum Range Descent) 

VEST TAS 

 
Figure 125.  Maximum Range Descent (VEST TAS) 
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Appendix I. Turn Performance Sortie Maneuver Plots 

Turn Performance Sortie  
(Maximum Power Level Turns) 
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Figure 126.  Maximum Power Level Turns (VEST 2) 
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Turn Performance Sortie  
(Maximum Power Level Turns) 

VEST 2 
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Figure 127.  Maximum Power Level Turns (VEST 2) 
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Turn Performance Sortie  
(Maximum Power Level Turns) 

VEST 

 
Figure 128.  Maximum Power Level Turns (VEST) 
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Turn Performance Sortie  
(Maximum Power Level Turns) 

VEST TAS 

 
Figure 129.  Maximum Power Level Turns (VEST TAS) 
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Turn Performance Sortie  
(Maximum Power Level Acceleration) 

VEST 2 

 
Figure 130.  Maximum Power Level Acceleration (VEST 2) 
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Turn Performance Sortie  
(Maximum Power Level Acceleration) 
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Figure 131.  Maximum Power Level Acceleration (VEST 2) 
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Turn Performance Sortie  
(Maximum Power Level Acceleration) 

VEST 

 
Figure 132.  Maximum Power Level Acceleration (VEST) 
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Turn Performance Sortie  
(Maximum Power Level Acceleration) 

VEST TAS 

 
Figure 133.  Maximum Power Level Acceleration (VEST TAS) 
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Turn Performance Sortie  
(Penetration Descent) 

VEST 2 

 
Figure 134.  Penetration Descent (VEST 2) 
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Turn Performance Sortie  
(Penetration Descent) 

VEST 2 
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Figure 135.  Penetration Descent (VEST 2) 
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Turn Performance Sortie  
(Penetration Descent) 

VEST 

 
Figure 136.  Penetration Descent (VEST) 
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Turn Performance Sortie  
(Penetration Descent) 

VEST TAS 

 
Figure 137.  Penetration Descent (VEST TAS) 
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Turn Performance Sortie  
(Penetration Descent) 

VEST (No Residual Logic) 

 
Figure 138.  Penetration Descent (VEST - No Residual Logic) 
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Turn Performance Sortie  
(Penetration Descent) 

VEST TAS (No Residual Logic) 

 
Figure 139.  Penetration Descent (VEST TAS - No Residual Logic) 
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Turn Performance Sortie  
(Recovery and Landing) 

VEST 2 

 
Figure 140.  Recovery and Landing (VEST 2) 
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Turn Performance Sortie  
(Recovery and Landing) 
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Figure 141.  Recovery and Landing (VEST 2) 
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Turn Performance Sortie  
(Recovery and Landing) 

VEST 

 
Figure 142.  Recovery and Landing (VEST) 
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Turn Performance Sortie  
(Recovery and Landing) 

VEST TAS 

 
Figure 143.  Recovery and Landing (VEST TAS) 
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Turn Performance Sortie  
(Recovery and Landing) 

VEST (No Residual Logic) 

 
Figure 144.  Recovery and Landing (VEST - No Residual Logic) 
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Turn Performance Sortie  
(Recovery and Landing) 

VEST TAS (No Residual Logic) 

 
Figure 145.  Recovery and Landing (VEST TAS - No Residual Logic) 
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Appendix J. Level Acceleration Sortie Maneuver Plots 

Level Acceleration Sortie  
(Military Power, 15K and 25K) 
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Figure 146.  15K and 20K Level Acceleration (VEST 2) 
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Level Acceleration Sortie  
(Military Power, 15K and 25K) 
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Figure 147.  15K and 20K Level Acceleration (VEST 2) 
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Level Acceleration Sortie  
(Military Power, 15K and 25K) 

VEST 

 
Figure 148.  15K and 20K Level Acceleration (VEST) 
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Level Acceleration Sortie  
(Military Power, 15K and 25K) 

VEST TAS 

 
Figure 149.  15K and 20K Level Acceleration (VEST TAS) 
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Level Acceleration Sortie  
(Military Power, 35K) 

VEST 2 

 
Figure 150.  35K Level Acceleration (VEST 2) 

 



 

220 

Level Acceleration Sortie  
(Military Power, 35K) 

VEST 2 
F-16 Filtered Winds  

 

 
Figure 151.  35K Level Acceleration (VEST 2) 
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Level Acceleration Sortie  
(Military Power, 35K) 

VEST 

 
Figure 152.  35K Level Acceleration (VEST) 
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Level Acceleration Sortie  
(Military Power, 35K) 

VEST TAS 

 
Figure 153.  35K Level Acceleration (VEST TAS) 
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Level Acceleration Sortie  
(Maximum Range Descent) 

VEST 2 

 
Figure 154.  Maximum Range Descent (VEST 2) 
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Level Acceleration Sortie  
(Maximum Range Descent) 
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Figure 155.  Maximum Range Descent (VEST 2) 
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Level Acceleration Sortie  
(Maximum Range Descent) 

VEST 

 
Figure 156.  Maximum Range Descent (VEST) 
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Level Acceleration Sortie  
(Maximum Range Descent) 

VEST TAS  

 
Figure 157.  Maximum Range Descent (VEST TAS) 
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Level Acceleration Sortie  
(Maximum Power, 10K, 20K, 30K, and 40K) 
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Figure 158.  10K, 20K, 30K and 40K Level Acceleration (VEST 2) 
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Level Acceleration Sortie  
(Maximum Power, 10K, 20K, 30K, and 40K) 
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Figure 159.  10K, 20K, 30K and 40K Level Acceleration (VEST 2) 
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Level Acceleration Sortie  
(Maximum Power, 10K, 20K, 30K, and 40K) 

VEST 

 
Figure 160.  10K, 20K, 30K and 40K Level Acceleration (VEST) 
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Level Acceleration Sortie  
(Maximum Power, 10K, 20K, 30K, and 40K) 
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Figure 161.  10K, 20K, 30K and 40K Level Acceleration (VEST TAS) 
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Level Acceleration Sortie  
(Maximum Power, 10K, 20K, 30K, and 40K) 

VEST (No Residual Logic) 

 
Figure 162.  10K, 20K, 30K and 40K Lvl Acc. (VEST - No Residual Logic) 
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Level Acceleration Sortie  
(Maximum Power, 10K, 20K, 30K, and 40K) 

VEST TAS (No Residual Logic) 

 
Figure 163.  10K, 20K, 30K and 40K Lvl Acc. (VEST TAS - No Residual Logic) 
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Level Acceleration Sortie  
(Penetration Descent) 

VEST 2 

 
Figure 164.  Penetration Descent (VEST 2) 
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Level Acceleration Sortie  
(Penetration Descent) 
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Figure 165.  Penetration Descent (VEST 2) 
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Level Acceleration Sortie  
(Penetration Descent) 
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Figure 166.  Penetration Descent (VEST) 
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Level Acceleration Sortie  
(Penetration Descent) 

VEST TAS 

 
Figure 167.  Penetration Descent (VEST TAS) 
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